scholarly journals Reflection and transmission of elastic waves at viscous liquid/micropolar elastic solid interface

2001 ◽  
Vol 26 (11) ◽  
pp. 685-694 ◽  
Author(s):  
Rajneesh Kumar ◽  
Sushil K. Tomar

Amplitude ratios of various reflected and transmitted elastic waves from a plane interface separating a viscous liquid half-space and a micropolar elastic solid half-space, are obtained in two cases (i) when longitudinal wave propagating through the solid half-space is made incident at the interface and (ii) when “coupled-wave” propagating through the solid half-space is made incident at the interface. These amplitude ratios have been computed numerically for a specific model and results obtained are presented graphically. It is found that these amplitude ratios depend on the angle of incidence of the incident wave and the effect of viscosity of the liquid on amplitude ratios is noticed. The problem studied by Tomar and Kumar (1995) has been reduced as a special case of our problem.

2018 ◽  
Vol 15 (08) ◽  
pp. 1850076 ◽  
Author(s):  
M. S. Barak ◽  
Vinod Kaliraman

The present paper concerned with the reflection and transmission of plane wave from a plane surface separating a micropolar viscoelastic solid (MVES) half-space and a fluid-saturated (FS) incompressible porous solid half-space is studied. A longitudinal wave ([Formula: see text]-wave) or transverse wave (SV-wave) impinges obliquely at the interface. Amplitude ratios for various reflected and transmitted waves have been obtained with the help of boundary conditions at the interface. Then, these amplitude ratios have been computed numerically for a specific model and results thus obtained are shown graphically with the angle of incidence of the incident wave. It is found that these amplitude ratios depend on the angle of incidence of the incident wave as well as on the properties of media. From the present investigation, a special case, when FS porous half-space reduces to empty porous solid and MVES half-space reduces to micropolar elastic solid, has also been deduced and discussed with the help of graphs.


2016 ◽  
Vol 23 (20) ◽  
pp. 3448-3467 ◽  
Author(s):  
Dilbag Singh ◽  
Neela Rani ◽  
Sushil Kumar Tomar

The present work is concerned with the study of reflection and transmission phenomena of dilatational waves at a plane interface between a microstretch elastic solid half-space and a microstretch liquid half-space. Eringen's theory of micro-continuum materials has been employed for addressing the mathematical analysis. Reflection and transmission coefficients, corresponding to various reflected and transmitted waves, have been obtained when a plane dilatational wave strikes obliquely at the interface after propagating through the solid half-space. It is found that the reflection and transmission coefficients are functions of the angle of incidence, the frequency of the incident wave and the elastic properties of the half-spaces. Numerical calculations have been carried out for a specific model by taking an aluminum matrix with randomly distributed epoxy spheres as the microstretch solid medium, while the microstretch fluid is taken arbitrarily with suitably chosen elastic parameters. The computed results obtained have been depicted graphically. The results of earlier studies have been deduced from the present formulation as special cases.


2013 ◽  
Vol 18 (1) ◽  
pp. 217-234 ◽  
Author(s):  
K. Sharma

The present investigation is concerned with the effect of two temperatures on reflection coefficients in a micropolar thermoelastic solid half space. With two relaxation times, reflection of plane waves impinging obliquely at a plane interface of the micropolar generalized thermoelastic solid half space with two temperatures is investigated. The incident wave is assumed to be striking at the plane surface after propagating through the micropolar generalized thermoelastic solid with two temperatures. Amplitude ratios of the various reflected waves are obtained in closed form and it is found that these are functions of angle of incidence, frequency and are affected by the elastic properties of the media. The effect of two temperatures is shown on these amplitude ratios for a specific model.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Vishakha Gupta ◽  
Anil K. Vashishth

The reflection and transmission of elastic waves in porous piezoelectric plate, overlying a porous piezoelectric half space and underlying a fluid half space, is studied. The constitutive and governing equations are formulated for porous piezoelectric materials. The expressions for the mechanical displacements, electric displacements, stresses, and electric potentials are derived for porous piezoelectric plate, porous piezoelectric half space, and fluid half space. The boundary conditions are described for the studied model. The behaviour of reflected and transmitted amplitude ratios relative to frequency, incident angle, thickness, and porosity is observed numerically. The impedance mismatching problem between the dense piezoelectric materials and the surrounding medium can be solved by the inclusion of porosity in dense piezoceramics.


1967 ◽  
Vol 57 (3) ◽  
pp. 393-419
Author(s):  
A. Levy ◽  
H. Deresiewicz

abstract The scattered field generated by normally incident body waves in a system of layers having small, but otherwise arbitrary, periodic deviations from plane parallel boundaries is shown to consist of superposed plane body and surfacetype waves. Results of numerical computations for two like half-spaces separated by a sinusoidally corrugated single layer, and by two layers, reveal the variation of the amplitude of the field with ratios of velocities, densities, impedances, and with those of depth of layers and wavelength of the boundary corrugations to the wavelength of the incident wave.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Baljeet Singh ◽  
Ritu Sindhu

An inviscid liquid half-space is considered in welded contact with a orthotropic micropolar solid half-space. Appropriate plane harmonic solutions of equations governing a liquid half-space and an orthotropic solid half-space are obtained. These solutions satisfy the required boundary conditions at the interface to obtain a system of four nonhomogeneous equations in amplitude ratios for incident quasi-longitudinal displacement wave. The amplitude ratios of various reflected and refracted waves are computed numerically for a particular example of the present model. The effect of anisotropy upon these amplitude ratios is shown graphically for a particular range of the angle of incidence.


Sign in / Sign up

Export Citation Format

Share Document