scholarly journals Some applications of minimal open sets

2001 ◽  
Vol 27 (8) ◽  
pp. 471-476 ◽  
Author(s):  
Fumie Nakaoka ◽  
Nobuyuki Oda

We characterize minimal open sets in topological spaces. We show that any nonempty subset of a minimal open set is pre-open. As an application of a theory of minimal open sets, we obtain a sufficient condition for a locally finite space to be a pre-Hausdorff space.

2014 ◽  
Vol 47 (2) ◽  
Author(s):  
Alias B. Khalaf ◽  
Hariwan Z. Ibrahim

AbstractWe characterize minimal P γ-open sets in topological spaces. We show that any nonempty subset of a minimal P γ-open set is pre P-open. As an application of a theory of minimal Pγ-open sets, we obtain a sufficient condition for a P-locally finite space to be a pre P γ-Hausdorff space


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Arif Mehmood ◽  
Saleem Abdullah ◽  
Mohammed M. Al-Shomrani ◽  
Muhammad Imran Khan ◽  
Orawit Thinnukool

In this article, new generalised neutrosophic soft open known as neutrosophic soft ∗ b open set is introduced in neutrosophic soft topological spaces. Neutrosophic soft ∗ b open set is generated with the help of neutrosophic soft semiopen and neutrosophic soft preopen sets. Then, with the application of this new definition, some soft neutrosophical separation axioms, countability theorems, and countable space can be Hausdorff space under the subjection of neutrosophic soft sequence which is convergent, the cardinality of neutrosophic soft countable space, engagement of neutrosophic soft countable and uncountable spaces, neutrosophic soft topological features of the various spaces, soft neutrosophical continuity, the product of different soft neutrosophical spaces, and neutrosophic soft countably compact that has the characteristics of Bolzano Weierstrass Property (BVP) are studied. In addition to this, BVP shifting from one space to another through neutrosophic soft continuous functions, neutrosophic soft sequence convergence, and its marriage with neutrosophic soft compact space, sequentially compactness are addressed.


2020 ◽  
Vol 9 (11) ◽  
pp. 9353-9360
Author(s):  
G. Selvi ◽  
I. Rajasekaran

This paper deals with the concepts of semi generalized closed sets in strong generalized topological spaces such as $sg^{\star \star}_\mu$-closed set, $sg^{\star \star}_\mu$-open set, $g^{\star \star}_\mu$-closed set, $g^{\star \star}_\mu$-open set and studied some of its basic properties included with $sg^{\star \star}_\mu$-continuous maps, $sg^{\star \star}_\mu$-irresolute maps and $T_\frac{1}{2}$-space in strong generalized topological spaces.


Author(s):  
Majid Mirmiran ◽  
Binesh Naderi

‎A necessary and sufficient condition in terms of lower cut sets ‎are given for the insertion of a contra-continuous function ‎between two comparable real-valued functions on such topological ‎spaces that kernel of sets are open‎. 


Author(s):  
Hind Fadhil Abbas

The fusion of technology and science is a very complex and scientific phenomenon that still carries mysteries that need to be understood. To unravel these phenomena, mathematical models are beneficial to treat different systems with unpredictable system elements. Here, the generalized intuitionistic fuzzy ideal is studied with topological space. These concepts are useful to analyze new generalized intuitionistic models. The basic structure is studied here with various relations between the generalized intuitionistic fuzzy ideals and the generalized intuitionistic fuzzy topologies. This study includes intuitionistic fuzzy topological spaces (IFS); the fundamental definitions of intuitionistic fuzzy Hausdorff space; intuitionistic fuzzy regular space; intuitionistic fuzzy normal space; intuitionistic fuzzy continuity; operations on IFS, the compactness and separation axioms.


2021 ◽  
Vol 7 ◽  
pp. 20-36
Author(s):  
Raja Mohammad Latif

In 2016 A. Devika and A. Thilagavathi introduced a new class of sets called M*-open sets and investigated some properties of these sets in topological spaces. In this paper, we introduce and study a new class of spaces, namely M*-irresolute topological vector spaces via M*-open sets. We explore and investigate several properties and characterizations of this new notion of M*-irresolute topological vector space. We give several characterizations of M*-Hausdorff space. Moreover, we show that the extreme point of the convex subset of M*-irresolute topological vector space X lies on the boundary.


1986 ◽  
Vol 28 (1) ◽  
pp. 31-36 ◽  
Author(s):  
P. Fletcher ◽  
W. F. Lindgren

The notation and terminology of this paper coincide with that of reference [4], except that here the term, compactification, refers to a T1-space. It is known that a completely regular totally bounded Hausdorff quasi-uniform space (X, ) has a Hausdorff compactification if and only if contains a uniformity compatible with ℱ() [4, Theorem 3.47]. The use of regular filters by E. M. Alfsen and J. E. Fenstad [1] and O. Njåstad [5], suggests a construction of a compactification, which differs markedly from the construction obtained in [4]. We use this construction to show that a totally bounded T1 quasi-uniform space has a compactification if and only if it is point symmetric. While it is pleasant to have a characterization that obtains for all T1-spaces, the present construction has several further attributes. Unlike the compactification obtained in [4], the compactification given here preserves both total boundedness and uniform weight, and coincides with the uniform completion when the quasi-uniformity under consideration is a uniformity. Moreover, any quasi-uniformly continuous map from the underlying quasi-uniform space of the compactification onto any totally bounded compact T1-space has a quasi-uniformly continuous extension to the compactification. If is the Pervin quasi-uniformity of a T1-space X, the compactification we obtain is the Wallman compactification of (X, ℱ ()). It follows that our construction need not provide a Hausdorff compactification, even when such a compactification exists; but we obtain a sufficient condition in order that our compactification be a Hausdorff space and note that this condition is satisfied by all uniform spaces and all normal equinormal quasi-uniform spaces. Finally, we note that our construction is reminiscent of the completion obtained by Á. Császár for an arbitrary quasi-uniform space [2, Section 3]; in particular our Theorem 3.7 is comparable with the result of [2, Theorem 3.5].


1976 ◽  
Vol 19 (1) ◽  
pp. 117-119
Author(s):  
H. L. Shapiro ◽  
F. A. Smith

Recently there has been a great deal of interest in extending refinements of locally finite and point finite collections on subsets of certain topological spaces. In particular the first named author showed that a subset S of a topological space X is P-embedded in X if and only if every locally finite cozero-set cover on S has a refinement that can be extended to a locally finite cozero-set cover of X. Since then many authors have studied similar types of embeddings (see [1], [2], [3], [4], [6], [8], [9], [10], [11], and [12]). Since the above characterization of P-embedding is equivalent to extending continuous pseudometrics from the subspace S up to the whole space X, it is natural to wonder when can a locally finite or a point finite open or cozero-set cover on S be extended to a locally finite or point-finite open or cozero-set cover on X.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1145
Author(s):  
Samer Al Ghour ◽  
Abdullah Alhorani

We introduce q-Lindelöf, u-Lindelöf, p-Lindelöf, s-Lindelöf, q-countably-compact, u-countably-compact, p-countably-compact, and s-countably-compact as new covering concepts in bigeneralized topological spaces via q-open sets and u-open sets in bigeneralized topological spaces. Relationships between them are studied. As two symmetries relationships, we show that q-Lindelöf and u-Lindelöf are equivalent concepts, and that q-countably-compact and u-countably-compact are equivalent concepts. We focus on continuity images of these covering properties. Finally, we define and investigate minimal q-open set, minimal u-open set, and minimal s-open sets as three new types of minimality in bigeneralized topological spaces.


1997 ◽  
Vol 07 (04) ◽  
pp. 365-378 ◽  
Author(s):  
Herbert Edelsbrunner ◽  
Nimish R. Shah

Given a subspace [Formula: see text] and a finite set S⊆ℝd, we introduce the Delaunay complex, [Formula: see text], restricted by [Formula: see text]. Its simplices are spanned by subsets T⊆S for which the common intersection of Voronoi cells meets [Formula: see text] in a non-empty set. By the nerve theorem, [Formula: see text] and [Formula: see text] are homotopy equivalent if all such sets are contractible. This paper proves a sufficient condition for [Formula: see text] and [Formula: see text] be homeomorphic.


Sign in / Sign up

Export Citation Format

Share Document