scholarly journals Asymptotic analysis by the saddle point method of the Anick-Mitra-Sondhi model

2004 ◽  
Vol 2004 (1) ◽  
pp. 19-71 ◽  
Author(s):  
Diego Dominici ◽  
Charles Knessl

We consider a fluid queue where the input process consists of N identical sources that turn on and off at exponential waiting times. The server works at the constant rate c and an on source generates fluid at unit rate. This model was first formulated and analyzed by Anick et al. (1982). We obtain an alternate representation of the joint steady-state distribution of the buffer content and the number of on sources. This is given as a contour integral that we then analyze in the limit N→∞. We give detailed asymptotic results for the joint distribution as well as the associated marginal and conditional distributions. In particular, simple conditional limits laws are obtained. These show how the buffer content behaves conditioned on the number of active sources and vice versa. Numerical comparisons show that our asymptotic results are very accurate even for N=20.

2000 ◽  
Vol 32 (1) ◽  
pp. 221-243 ◽  
Author(s):  
A. P. Zwart

We consider a fluid model similar to that of Kella and Whitt [32], but with a buffer having finite capacity K. The connections between the infinite buffer fluid model and the G/G/1 queue established by Kella and Whitt are extended to the finite buffer case: it is shown that the stationary distribution of the buffer content is related to the stationary distribution of the finite dam. We also derive a number of new results for the latter model. In particular, an asymptotic expansion for the loss fraction is given for the case of subexponential service times. The stationary buffer content distribution of the fluid model is also related to that of the corresponding model with infinite buffer size, by showing that the two corresponding probability measures are proportional on [0,K) if the silence periods are exponentially distributed. These results are applied to obtain large buffer asymptotics for the loss fraction and the mean buffer content when the fluid queue is fed by N On-Off sources with subexponential on-periods. The asymptotic results show a significant influence of heavy-tailed input characteristics on the performance of the fluid queue.


2019 ◽  
Author(s):  
Pavol Bokes ◽  
Alessandro Borri ◽  
Pasquale Palumbo ◽  
Abhyudai Singh

AbstractNoise in gene expression can be substantively affected by the presence of production delay. Here we consider a mathematical model with bursty production of protein, a one-step production delay (the passage of which activates the protein), and feedback in the frequency of bursts. We specifically focus on examining the steady-state behaviour of the model in the slow-activation (i.e. large-delay) regime. Using a quasi-steady-state (QSS) approximation, we derive an autonomous ordinary differential equation for the inactive protein that applies in the slow-activation regime. If the differential equation is monostable, the steady-state distribution of the inactive (active) protein is approximated by a single Gaussian (Poisson) mode located at the globally stable steady state of the differential equation. If the differential equation is bistable (due to cooperative positive feedback), the steady-state distribution of the inactive (active) protein is approximated by a mixture of Gaussian (Poisson) modes located at the stable steady states; the weights of the modes are determined from a WKB approximation to the stationary distribution. The asymptotic results are compared to numerical solutions of the chemical master equation.


2000 ◽  
Vol 32 (01) ◽  
pp. 221-243 ◽  
Author(s):  
A. P. Zwart

We consider a fluid model similar to that of Kella and Whitt [32], but with a buffer having finite capacity K. The connections between the infinite buffer fluid model and the G/G/1 queue established by Kella and Whitt are extended to the finite buffer case: it is shown that the stationary distribution of the buffer content is related to the stationary distribution of the finite dam. We also derive a number of new results for the latter model. In particular, an asymptotic expansion for the loss fraction is given for the case of subexponential service times. The stationary buffer content distribution of the fluid model is also related to that of the corresponding model with infinite buffer size, by showing that the two corresponding probability measures are proportional on [0,K) if the silence periods are exponentially distributed. These results are applied to obtain large buffer asymptotics for the loss fraction and the mean buffer content when the fluid queue is fed by N On-Off sources with subexponential on-periods. The asymptotic results show a significant influence of heavy-tailed input characteristics on the performance of the fluid queue.


1985 ◽  
Vol 248 (5) ◽  
pp. C498-C509 ◽  
Author(s):  
D. Restrepo ◽  
G. A. Kimmich

Zero-trans kinetics of Na+-sugar cotransport were investigated. Sugar influx was measured at various sodium and sugar concentrations in K+-loaded cells treated with rotenone and valinomycin. Sugar influx follows Michaelis-Menten kinetics as a function of sugar concentration but not as a function of Na+ concentration. Nine models with 1:1 or 2:1 sodium:sugar stoichiometry were considered. The flux equations for these models were solved assuming steady-state distribution of carrier forms and that translocation across the membrane is rate limiting. Classical enzyme kinetic methods and a least-squares fit of flux equations to the experimental data were used to assess the fit of the different models. Four models can be discarded on this basis. Of the remaining models, we discard two on the basis of the trans sodium dependence and the coupling stoichiometry [G. A. Kimmich and J. Randles, Am. J. Physiol. 247 (Cell Physiol. 16): C74-C82, 1984]. The remaining models are terter ordered mechanisms with sodium debinding first at the trans side. If transfer across the membrane is rate limiting, the binding order can be determined to be sodium:sugar:sodium.


Games ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 55
Author(s):  
Markus Kinateder ◽  
Luca Paolo Merlino

In this paper, we propose a game in which each player decides with whom to establish a costly connection and how much local public good is provided when benefits are shared among neighbors. We show that, when agents are homogeneous, Nash equilibrium networks are nested split graphs. Additionally, we show that the game is a potential game, even when we introduce heterogeneity along several dimensions. Using this result, we introduce stochastic best reply dynamics and show that this admits a unique and stationary steady state distribution expressed in terms of the potential function of the game. Hence, even if the set of Nash equilibria is potentially very large, the long run predictions are sharp.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1014
Author(s):  
Polly-Anne Jeffrey ◽  
Martín López-García ◽  
Mario Castro ◽  
Grant Lythe ◽  
Carmen Molina-París

Cellular receptors on the cell membrane can bind ligand molecules in the extra-cellular medium to form ligand-bound monomers. These interactions ultimately determine the fate of a cell through the resulting intra-cellular signalling cascades. Often, several receptor types can bind a shared ligand leading to the formation of different monomeric complexes, and in turn to competition for the common ligand. Here, we describe competition between two receptors which bind a common ligand in terms of a bi-variate stochastic process. The stochastic description is important to account for fluctuations in the number of molecules. Our interest is in computing two summary statistics—the steady-state distribution of the number of bound monomers and the time to reach a threshold number of monomers of a given kind. The matrix-analytic approach developed in this manuscript is exact, but becomes impractical as the number of molecules in the system increases. Thus, we present novel approximations which can work under low-to-moderate competition scenarios. Our results apply to systems with a larger number of population species (i.e., receptors) competing for a common resource (i.e., ligands), and to competition systems outside the area of molecular dynamics, such as Mathematical Ecology.


Sign in / Sign up

Export Citation Format

Share Document