scholarly journals Model Calculations of Plastic Deformation of Two-Phase Materials With Fibre Structure

1993 ◽  
Vol 22 (1) ◽  
pp. 29-42 ◽  
Author(s):  
H. J. Bunge ◽  
W. Böcker

Plastic flow in two-phase fibre composites during axially symetric deformation is modelled assuming homogeneous deformation of the fibres of the harder phase and inhomogeneous flow in the softer matrix. The distribution of flow between fibres and matrix is described by the deformation ratio α which follows from the assumption of minimum deformation work. The main features of the model agree quite well with experimental results obtained in several powder metallurgically prepared two-phase composites.

1989 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
H. J. Bunge

Young's modulus of heavily deformed two-phase composites shows an unusually high increase after plastic deformation. It is assumed that this is due to two reasons, i.e. texture changes and changes of the moduli of the constitutive phases on the basis of non-linear elasticity theory and internal stresses of opposite sign in the phases. Expressions of the two contributions are given on the basis of simple model assumptions. It is estimated that the changes of shape and arrangement of the phases and shape and arrangement of the crystallites in the phases are only of minor importance.


Author(s):  
E.G. Astafurova ◽  
◽  
K.A. Reunova ◽  
S.V. Astafurov ◽  
M.Yu. Panchenko ◽  
...  

We investigated the phase composition, plastic deformation and fracture micromechanisms of Fe-(25-26)Cr-(5-12)Mn-0.15C-0.55N (wt. %) high-nitrogen chromium-manganese steel. Obtained by the method of electron-beam 3D-printing (additive manufacturing) and subjected to a heat treatment (at a temperature of 1150°C following by quenching). To establish the effect of the electron-beam 3D-printing process on the phase composition, microstructure and mechanical properties of high-nitrogen steel, a comparison was made with the data for Fe-21Cr-22Mn-0.15C-0.53N austenitic steel (wt. %) obtained by traditional methods (casting and heat treatment) and used as a raw material for additive manufacturing. It was experimentally established that in the specimens obtained by additive manufacturing method, depletion of the steel composition by manganese in the electron-beam 3D-printing and post-built heat treatment contributes to the formation of a macroscopically and microscopically inhomogeneous two-phase structure. In the steel specimens, macroscopic regions of irregular shape with large ferrite grains or a two-phase austenite-ferrite structure (microscopic inhomogeneity) were observed. Despite the change in the concentration of the basic elements (chromium and manganese) in additive manufacturing, a high concentration of interstitial atoms (nitrogen and carbon) remains in steel. This contributes to the macroscopically heterogeneous distribution of interstitial atoms in the specimens - the formation of a supersaturated interstitial solid solution in the austenitic regions due to the low solubility of nitrogen and carbon in the ferrite regions. This inhomogeneous heterophase (ferrite-austenite) structure has high strength properties, good ductility and work hardening, which are close to those of the specimens of the initial high-nitrogen austenitic steel used as the raw material for additive manufacturing.


2018 ◽  
Vol 104 ◽  
pp. 173-195 ◽  
Author(s):  
X.G. Fan ◽  
X.Q. Jiang ◽  
X. Zeng ◽  
Y.G. Shi ◽  
P.F. Gao ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 1753-1758
Author(s):  
Sergey Zherebtsov ◽  
Nikita Stepanov ◽  
Gennady Salishchev

The influence of various factors on the efficiency of microstructure refinement in two-phase titanium alloys with respect to a well-known Ti-6Al-4V alloy was discussed. The kinetics of microstructure evolution in titanium alloys with a lamellar type α/β microstructure during large plastic deformation depends mainly on temperature and strain rate, type of the initial microstructure, thickness of the α lamellae, path of deformation and chemical composition. Each parameter should be controlled to provide the most efficient microstructure refinement during conventional metalforming methods.


2010 ◽  
Vol 145 ◽  
pp. 424-428 ◽  
Author(s):  
Li Cui ◽  
Xian Lei Hu ◽  
Xiang Hua Liu

In order to analysis the effect of leveling strategy on the quality of plate products, the curvature integration by elastic-plastic differences was adopted to simulate leveling results by different leveling strategy. It had studied plastic deformation ratio, residual stress, residual curvature and leveling force for different leveling strategies to find the effectual strategy and the adaptability conditions were given. Additionally, static pressure leveling with the time delay strategy was analyzed, which was proved to be an effectual strategy to resolve the leveling problem for high strength thicker plate by a certain 3500mm mill plate.


2015 ◽  
Vol 1123 ◽  
pp. 16-19
Author(s):  
Rifky Ismail ◽  
T. Prasojo ◽  
Mohammad Tauviqirrahman ◽  
J. Jamari ◽  
D.J. Schipper

Investigation of local plastic deformation between rough surfaces in mechanical components such as gears, camshaft and bearings is very important. Contact between real surfaces occurs at the summits of the highest asperities which vary in height and radius. The plastic deformation of the contact between two asperities was studied in this paper. Asperity contact was modelled as a contact between hemispheres. The commercial finite element software, ABAQUS, was employed to perform the numerical contact analysis of the elastic perfectly-plastic deforming hemispheres with the ratios of radii (R2/R1) from 1 to 7. Normal loads of 5000 N, 8000 N and 11000 N were applied to the frictionless contact of the hemispheres. It was shown that the plastic deformation ratio (ωp1/ωp2) decreases as the radii ratio increases. The higher normal load showed a lower plastic deformation ratio for high radii ratio. The results indicate that the radii ratio contributes to the severity of the plastic deformation and the total displacement of the contacting asperities.


Author(s):  
J. J. Schro¨der ◽  
S. Alraun

Experimental investigations on heat transfer in tubular micro- or minichannel arrangements more often report on two-phase flow instabilities, pulsations or oscillations, which result in a remarkable influence on heat transfer efficiency. In order to explain the piston-like oscillations of the steam-plugs and water-slugs (-columns), the authors studied the somehow similar process which occurs in the worldwide known toy steam boat. Experiments have been performed which used a demonstration plant made of glass. By controlled electrical heating, high-speed video, pressure and local temperature measurements, the paths of energy have been disclosed. The results are as surprising as the effect of making gold from sand with respect to an equivalent axial heat-conductivity of the water-filled glass tube. Initiated by these results, an abstracting model is presented that analytically quantifies this new regenerating (oscillating and conducting) heat transfer mode e.g. concerning the combination of a heat recharging tube wall and an oscillating water column in a field of diminishing temperatures between the temperature of the boiler surface and the subcooled bulk water. By introducing these heat transfer details, the steam boat can give an answer, not only on frequency and amplitude of the oscillations, but on the steady state conditions for — or time-dependency of — the location of zero-crossing as well. Experimental results and model calculations are in good agreement and need no fitting factors. This is the base to discuss that process along with its physical parameters and compare it to the above mentioned observations in flow-boilers or pulsating heat pipes etc. which use microchannels or minichannels.


1978 ◽  
Vol 26 (9) ◽  
pp. 1453-1459 ◽  
Author(s):  
Takayuki Takasugi ◽  
Nabil Fat-Halla ◽  
Osamu Izumi

Sign in / Sign up

Export Citation Format

Share Document