scholarly journals Induction of Apoptosis in Leukemic Cells by Homovanillic Acid Derivative, Capsaicin, through Oxidative Stress

2004 ◽  
Vol 64 (3) ◽  
pp. 1071-1078 ◽  
Author(s):  
Keisuke Ito ◽  
Tomonori Nakazato ◽  
Kenji Yamato ◽  
Yoshitaka Miyakawa ◽  
Taketo Yamada ◽  
...  
2006 ◽  
Vol 85 (5) ◽  
pp. 355-365 ◽  
Author(s):  
Paul J. Guérin ◽  
Teresa Furtak ◽  
Kellton Eng ◽  
Eric R. Gauthier

2021 ◽  
Vol 25 (4) ◽  
pp. 315-330
Author(s):  
Milka Mileva ◽  
◽  
Lyudmila Dimitrova ◽  
Milena Popova ◽  
Vassya Bankova ◽  
...  

Burkitt’s lymphoma is a highly aggressive type of non-Hodgkin’s lymphoma, linked to the Epstein-Barr virus, which induces oxidative stress and DNA damage in the infected cells. We investigated the cytotoxicity and redox-modulating ability of ethyl acetate (EtOAc) and n-butanol (n-BuOH) extracts from Geum urbanum L. roots and aerial parts on Burkitt`s lymphoma cells (BLC), to elucidate their impact on oxidative stress and cell survival. BLC Raji was treated with EtOAc and n-BuOH extracts to analyze: cell viability; induction of apoptosis; hydroperoxides and reactive nitrogen species (RNS) by 2’,7’-dichlorodihydrofluorescein assay; superoxide by dihydroethidium assay; total antioxidant capacity by TAC assay. All extracts suppressed cell growth and induce apoptosis. n-BuOH extracts possessed higher cytotoxicity and pro-apoptotic activity compared to EtOAc. The fractions decreased the hydroperoxides and RNS levels. There was no correlation between the DCF fluorescence in the treated cells and their viability (R = -0.3722; p > 0.05). Root extracts decreased the superoxide level, while the leaf extracts did not. There was a good correlation between the dihydroethidium fluorescence in the treated cells and their viability (R = 0.9843; p < 0.01). All extracts increased the TAC of BLC. G. urbanum extracts serve as redox-modulators and anti-inflammatory compounds, decreasing the intracellular level of “oncogenic” superoxide and cell proliferation.


2007 ◽  
Vol 67 (24) ◽  
pp. 11906-11913 ◽  
Author(s):  
L.-F. Dong ◽  
E. Swettenham ◽  
J. Eliasson ◽  
X.-F. Wang ◽  
M. Gold ◽  
...  

1994 ◽  
Vol 57 (5) ◽  
pp. 645-649 ◽  
Author(s):  
Luisa Diombde ◽  
Bianca Piovani ◽  
Fabio Re ◽  
Paola Principe ◽  
Francesco Colotta ◽  
...  

2009 ◽  
Vol 20 (16) ◽  
pp. 3628-3637 ◽  
Author(s):  
Philippe J. Nadeau ◽  
Steve J. Charette ◽  
Jacques Landry

ASK1 cysteine oxidation allows JNK activation upon oxidative stress. Trx1 negatively regulates this pathway by reducing the oxidized cysteines of ASK1. However, precisely how oxidized ASK1 is involved in JNK activation and how Trx1 regulates ASK1 oxidoreduction remains elusive. Here, we describe two different thiol reductase activities of Trx1 on ASK1. First, in H2O2-treated cells, Trx1 reduces the various disulfide bonds generated between cysteines of ASK1 by a rapid and transient action. Second, in untreated cells, Trx1 shows a more stable thiol reductase activity on cysteine 250 (Cys250) of ASK1. After H2O2 treatment, Trx1 dissociates from Cys250, which is not sufficient to activate the ASK1-JNK pathway. Indeed, in untreated cells, a Cys250 to alanine mutant of ASK1 (C250A), which cannot bind Trx1, does not constitutively activate JNK. On the other hand, in H2O2-treated cells, this mutant (C250A) fails to activate JNK and does not induce apoptosis, although it remains fully phosphorylated on Threonine 838 (Thr838) in its activation loop. Overall, our data show that Cys250 is essential for H2O2-dependent signaling downstream from ASK1 but at a step subsequent to the phosphorylation of ASK1 Thr838. They also clarify the thiol reductase function of Trx1 on ASK1 activity.


2020 ◽  
Vol 44 (5) ◽  
pp. 2091-2101
Author(s):  
Mengnan Zeng ◽  
Yangang Cao ◽  
Ruiqi Xu ◽  
Yuanyuan Wu ◽  
Yangyang Wang ◽  
...  

Acute kidney injury (AKI) is a frequent complication of sepsis with hallmarks including inflammation and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document