scholarly journals Aquaporin-7 Regulates the Response to Cellular Stress in Breast Cancer

2020 ◽  
Vol 80 (19) ◽  
pp. 4071-4086
Author(s):  
Chen Dai ◽  
Verodia Charlestin ◽  
Man Wang ◽  
Zachary T. Walker ◽  
Maria Cristina Miranda-Vergara ◽  
...  
2021 ◽  
Author(s):  
Carlos Perez Kerkvliet ◽  
Thu H. Truong ◽  
Julie Hanson Ostrander ◽  
Carol A. Lange

Abstract The classification and treatment of breast cancer is largely defined by the expression of steroid hormone receptors (HRs), namely estrogen receptor (ER) and progesterone receptor (PR), and gene amplification/overexpression of human epidermal growth factor receptor 2 (HER2). More recently, studies of androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) have revealed that targeting these related HRs may be a promising strategy for a more personalized approach to the treatment of specific subtypes of HR+ breast cancer. For example, GR expression is associated with a good prognosis in ER+ breast cancer, but predicts poor prognosis in triple-negative breast cancer (TNBC). GR, like ER, PRs, and AR, is a ligand-activated transcription factor, but also has significant ligand-independent signaling activities. GR transcriptional activity is classically regulated by circulating glucocorticoids (GCs; ligand-dependent). Recent studies demonstrate that GR transcriptional activity is also regulated by a variety of cellular stress stimuli that input to GR Ser134 phosphorylation via rapid activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway (ligand-independent). Furthermore, ligand-independent GR activation promotes feedforward signaling loops that mediate sustained activation of stress signaling pathways to drive advanced cancer biology (i.e. migration, invasion, chemoresistance, survival, and cellular growth). In this review, we will focus on the role of GR as a key sensor and mediator of physiologic and tumor microenvironment (TME)-derived cellular stress signaling in TNBC and discuss how targeting GR and/or associated signaling pathways may provide a strategy to inhibit deadly TNBC progression.


Author(s):  
G. Kasnic ◽  
S. E. Stewart ◽  
C. Urbanski

We have reported the maturation of an intracisternal A-type particle in murine plasma cell tumor cultures and three human tumor cell cultures (rhabdomyosarcoma, lung adenocarcinoma, and osteogenic sarcoma) after IUDR-DMSO activation. In all of these studies the A-type particle seems to develop into a form with an electron dense nucleoid, presumably mature, which is also intracisternal. A similar intracisternal A-type particle has been described in leukemic guinea pigs. Although no biological activity has yet been demonstrated for these particles, on morphologic grounds, and by the manner in which they develop within the cell, they may represent members of the same family of viruses.


Author(s):  
John L. Swedo ◽  
R. W. Talley ◽  
John H. L. Watson

Since the report, which described the ultrastructure of a metastatic nodule of human breast cancer after estrogen therapy, additional ultrastructural observations, including some which are correlative with pertinent findings in the literature concerning mycoplasmas, have been recorded concerning the same subject. Specimen preparation was identical to that in.The mitochondria possessed few cristae, and were deteriorated and vacuolated. They often contained particulates and fibrous structures, sometimes arranged in spindle-shaped bundles, Fig. 1. Another apparent aberration was the occurrence, Fig. 2 (arrows) of linear profiles of what seems to be SER, which lie between layers of RER, and are often recognizably continuous with them.It was noted that the structure of the round bodies, interpreted as within autophagic vacuoles in the previous communication, and of vesicular bodies, described morphologically closely resembled those of some mycoplasmas. Specifically, they simulated or reflected the various stages of replication reported for mycoplasmas grown on solid nutrient. Based on this observation, they are referred to here as “mycoplasma-like” structures, in anticipation of confirmatory evidence from investigations now in progress.


2020 ◽  
Vol 48 (2) ◽  
pp. 631-644 ◽  
Author(s):  
Rajdeep Das ◽  
Oishee Chakrabarti

The cellular mitochondrial population undergoes repeated cycles of fission and fusion to maintain its integrity, as well as overall cellular homeostasis. While equilibrium usually exists between the fission–fusion dynamics, their rates are influenced by organellar and cellular metabolic and pathogenic conditions. Under conditions of cellular stress, there is a disruption of this fission and fusion balance and mitochondria undergo either increased fusion, forming a hyperfused meshwork or excessive fission to counteract stress and remove damaged mitochondria via mitophagy. While some previous reports suggest that hyperfusion is initiated to ameliorate cellular stress, recent studies show its negative impact on cellular health in disease conditions. The exact mechanism of mitochondrial hyperfusion and its role in maintaining cellular health and homeostasis, however, remain unclear. In this review, we aim to highlight the different aspects of mitochondrial hyperfusion in either promoting or mitigating stress and also its role in immunity and diseases.


2010 ◽  
Vol 34 (8) ◽  
pp. S49-S49
Author(s):  
Lei Wang ◽  
Xun Zhou ◽  
Lihong Zhou ◽  
Yong Chen ◽  
Xun Zhu ◽  
...  

2010 ◽  
Vol 34 (8) ◽  
pp. S47-S47
Author(s):  
Guopei Zheng ◽  
Sisi Yi ◽  
Yafei Li ◽  
Fangren Kong ◽  
Yanhui Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document