P3-17-08: Macroautophagy Protects Breast Cancer MCF-7 Cells from TAM-Induced Apoptosis Via Mitogen-Activated Protein Kinase (MAPK) Pathway.

Author(s):  
YF Hou ◽  
XY Ma ◽  
ZB Liu ◽  
SJ Yu ◽  
ZM Shao
2020 ◽  
Vol 39 (10) ◽  
pp. 1374-1389
Author(s):  
O Karaosmanoğlu

The present study has three purposes; first evaluating cytotoxicity of (E)-4-chloro-2-((3-ethoxy-2-hydroxybenzylidene)amino)phenol (ACES), second deciphering ACES-mediated cellular death mechanism, and third estimating ACES-mediated alterations in the expressions of mitogen-activated protein kinase (MAPK) pathway-related genes. Neutral red uptake assay, cell cycle analysis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) measurements, caspase 3/7 and 9 activations, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were implemented. IC50 values of ACES-treated five cells were around 4–6 µg/mL. However, Caco-2 and Huh-7 cells were found to be twofold resistant and fivefold sensitive with IC50 values of 11 µg/mL and 0.93 µg/mL, respectively. In this study, it was initially reported that ACES exhibits selective cytotoxicity to Huh-7 cells. In addition, ACES induced apoptosis by nuclear fragmentation, MMP disruption, and intracellular ROS elevation in MCF-7 cells. qRT-PCR experiment indicated the expressions of 30 genes including ATF2, CREB1, MYC, NFATC4 (NFAT3), CCNA1, CCNB1, CCND2, CDK2, CDKN1A (p21CIP1), CDKN1C (p57KIP2), CDKN2A (p16INK4a), CDKN2B (p15INK4b), DLK1, NRAS, CDC42, PAK1, MAP4K1 (HPK1), MAP3K3 (MEKK3), MAP2K3 (MEK3), MAP2K6 (MEK6), MOS, MAPK1 (ERK2), MAPK8 (JNK1), MAPK10 (JNK3), MAPK11 (p38-β), LAMTOR3 (MP1), MAPK8IP2 (JIP-1), PRDX6 (AOP2), COL1A1, and HSPA5 (Grp78) were downregulated at least 1.5-fold. Moreover, ACES effectively inhibited expressions of genes that code for elements of p38-β/stress-activated protein kinase (SAPK) pathway. ACES has the potential to be used for the reversal of trastuzumab resistance in breast cancer patients by inhibiting p38/SAPK pathway in MCF-7 cells. Therefore, with the selective cytotoxic, apoptosis-inducing, and p38-β/SAPK-inhibiting activities, ACES can be utilized for developing a novel anticancer drug.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiang-Yan Chen ◽  
Jie Zhou ◽  
Li-Ping Luo ◽  
Bin Han ◽  
Fei Li ◽  
...  

Overexpression of human epidermal growth factor receptor 2 (HER2) drives the biology of 30% of breast cancer cases. As a transducer of HER2 signaling, RAS/RAF/MAPK pathway plays a pivotal role in the development of breast cancer. In this study, we examined the molecular mechanisms underlying the chemopreventive effects of black rice anthocyanins (BRACs) extract and identified their molecular targets in HER2+breast cancer cells. Treatment of MDA-MB-453 cells (HER2+) with BRACs inhibited cell migration and invasion, suppressed the activation of mitogen-activated protein kinase kinase kinase (RAF), mitogen-activated protein kinase kinase (MEK), and c-Jun N-terminal kinase (JNK), and downregulated the secretion of matrix metalloproteinase 2 (MMP2) and MMP9. BRACs also weakened the interactions of HER2 with RAF, MEK, and JNK proteins, respectively, and decreased the mRNA expression ofraf,mek, andjnk. Further, we found combined treatment with BRACs and RAF, MEK, or JNK inhibitors could enhance the antimetastatic activity, compared with that of each treatment. Transient transfection with small interfering RNAs (siRNAs) specific forraf,mek, andjnkinhibited their mRNA expression in MDA-MB-453 cells. Moreover, cotreatment with BRACs and siRNA induces a more remarkable inhibitory effect than that by either substance alone. In summary, our study suggested that BRACs suppress metastasis in breast cancer cells by targeting the RAS/RAF/MAPK pathway.


2004 ◽  
Vol 93 (2) ◽  
pp. 384-397 ◽  
Author(s):  
Daniela A. Capiati ◽  
Ana M. Rossi ◽  
Gabriela Picotto ◽  
Silvia Benassati ◽  
Ricardo L. Boland

Sign in / Sign up

Export Citation Format

Share Document