Abstract P2-09-07: Inhibition of aurora-A by MLN8237 decreases SMAD5 expression and increases effectiveness of chemotherapeutic agents in breast cancer cells

Author(s):  
M Opyrchal ◽  
I Iankov ◽  
JN Ingle ◽  
E Galanis ◽  
AB D'Assoro
2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13516-e13516 ◽  
Author(s):  
Mateusz Opyrchal ◽  
Ianko Iankov ◽  
James N. Ingle ◽  
Jeffrey L. Salisbury ◽  
Evanthia Galanis ◽  
...  

e13516 Background: Breast cancer affects thousands of women each year. Epithelial to Mesenchymal transition (EMT) has been associated with increased metastatic potential of cancer cells as well as resistance to chemotherapy. Predicatively, presence of EMT leads to worse prognosis. We have recently showed that Aurora-A plays a key role in development of EMT and increased ability of breast cancer cells for self renewal. Therefore we hypothesized that inhibition of Aurora-A will lead to increased sensitivity to chemotherapy. Methods: The hypothesis was tested in vitro. Cellular proliferation was tested using MTT assay and protein levels were determined on Western blots. Results: In ER+ cell line, MCF7, constitutive activation of Raf-1/MAPK signaling pathway leads to aberrant activation of Aurora-A kinase activity. These cells have decreased sensitivity to treatment with paclitaxel when compared to parental MCF7 cells. This effect is even more pronounced with over-expression of Aurora-A. The sensitivity to paclitaxel was restored with inhibition of Aurora-A by novel inhibitor, Alisertib. This was further explored in triple negative cells (MDA-MB-231) and cells expressing Her-2/neu (BT474) which express higher levels of Aurora-A. Combination of Alisertib and paclitaxel was superior when compared to either therapy alone. Similar effect was seen with use of anthracyclines. Inhibition of Aurora-A resulted in decreased SMAD5 expression as well as decreased Akt phosphorylation. Current studies are investigating a role of Aurora-A in developing chemoresistance through activating SMAD5. In vivo experiments evaluating combination therapies in breast cancer animal model are ongoing. Conclusions: Inhibition of Aurora-A by Alisertib resulted in decreased SMAD5 nuclear phosphorylation and increased effectiveness of chemotherapeutic agents in breast cancer cells. These results contribute to better understanding of signaling pathways involved in resistance of breast cancer cells to chemotherapy. This knowledge could be extremely useful in developing more effective treatments for breast cancer patients both in neo-adjuvant, adjuvant and metastatic settings.


2020 ◽  
Vol 21 (14) ◽  
pp. 5080
Author(s):  
Munki Jeong ◽  
Euitaek Jung ◽  
Young Han Lee ◽  
Jeong Kon Seo ◽  
Seunghyun Ahn ◽  
...  

Breast cancer is a common malignancy among women worldwide. Gelatinases such as matrix metallopeptidase 2 (MMP2) and MMP9 play crucial roles in cancer cell migration, invasion, and metastasis. To develop a novel platform compound, we synthesized a flavonoid derivative, (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile (named DK4023) and characterized its inhibitory effects on the motility and MMP2 and MMP9 expression of highly metastatic MDA-MB-231 breast cancer cells. We found that DK4023 inhibited tumor necrosis factor alpha (TNFα)-induced motility and F-actin formation of MDA-MB-231 cells. DK4023 also suppressed the TNFα-induced mRNA expression of MMP9 through the downregulation of the TNFα-extracellular signal-regulated kinase (ERK)/early growth response 1 (EGR-1) signaling axis. These results suggest that DK4023 could serve as a potential platform compound for the development of novel chemopreventive/chemotherapeutic agents against invasive breast cancer.


Author(s):  
Dong-ho Bak ◽  
Seong Hee Kang ◽  
Chul-hong Park ◽  
Byung Yeoup Chung ◽  
Hyoung-Woo Bai

Abstract Chemotherapy for cancer treatment has therapeutic limitations, such as drug resistance, excessive toxic effects and undesirable adverse effects. Therefore, efforts to improve the safety and efficacy of chemotherapeutic agents are essential. Ionizing radiation can improve physiological and pharmacological properties by transforming structural modifications of the drug. In this study, in order to reduce the adverse effects of rotenone and increase anticancer activity, a new radiolytic rotenone derivative called rotenoisin A was generated through radiolytic transformation. Our findings showed that rotenoisin A inhibited the proliferation of breast cancer cells and increased the rate of apoptosis, whereas it had no inhibitory effect on primary epidermal keratinocytes compared with rotenone. Moreover, rotenoisin A-induced DNA damage by increasing reactive oxygen species (ROS) accumulation. It was also confirmed not only to alter the composition ratio of mitochondrial proteins, but also to result in structural and functional changes. The anticancer effect and molecular signalling mechanisms of rotenoisin A were consistent with those of rotenone, as previously reported. Our study suggests that radiolytic transformation of highly toxic compounds may be an alternative strategy for maintaining anticancer effects and reducing the toxicity of the parent compound.


2017 ◽  
Vol 39 (1) ◽  
pp. 25-29 ◽  
Author(s):  
V F Chekhun ◽  
N Yu Lukianova ◽  
T Borikun ◽  
T Zadvornyi ◽  
A Mokhir

Aim: To explore effects of Artemisinin on a series of breast cancer cells with different sensitivity to typical cytotoxic drugs (doxorubicin — Dox; cisplatin — DDP) and to investigate possible artemisinin-induced modification of the mechanisms of drug resistance. Materials and Methods: The study was performed on wild-type breast cancer MCF-7 cell line (MCF-7/S) and its two sublines MCF-7/Dox and MCF-7/DDP resistant to Dox and DDP, respectively. The cells were treated with artemisinin and iron-containing magnetic fluid. The latter was added to modulate iron levels in the cells and explore its role in artemisinin-induced effects. The MTT assay was used to monitor cell viability, whereas changes of expression of selected proteins participating in regulation of cellular iron homeostasis were estimated using immunocytochemical methods. Finally, relative expression levels of miRNA-200b, -320a, and -34a were examined by using qRT-PCR. Results: Artemisinin affects mechanisms of the resistance of breast cancer cells towards both Dox and DDP at sub-toxic doses. The former drug induces changes of expression of iron-regulating proteins via different mechanisms, including epigenetic regulation. Particularly, the disturbances in ferritin heavy chain 1, lactoferrin, hepcidin (decrease) and ferroportin (increase) expression (р ≤ 0.05) were established. The most enhanced increase of miRNA expression under artemisinin influence were found for miRNA-200b in MCF-7/DDP cells (7.1 ± 0.98 fold change), miRNA-320a in MCF-7/Dox cells (2.9 ± 0.45 fold change) and miRNA-34a (1.7 ± 0.15 fold change) in MCF-7/S cells. It was observed that the sensitivity to artemisinin can be influenced by changing iron levels in cells. Conclusions: Artemisinin can modify iron metabolism of breast cancer cells by its cytotoxic effect, but also by inducing changes in expression of iron-regulating proteins and microRNAs (miRNAs), involved in their regulation. This modification affects the mechanisms that are implicated in drug-resistance, that makes artemisinin a perspective modulator of cell sensitivity towards chemotherapeutic agents in cancer treatment.


Oncotarget ◽  
2017 ◽  
Vol 8 (53) ◽  
pp. 91803-91816 ◽  
Author(s):  
Mateusz Opyrchal ◽  
Malgorzata Gil ◽  
Jeffrey L. Salisbury ◽  
Mathew P. Goetz ◽  
Vera Suman ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Thandi Mqoco ◽  
André Stander ◽  
Anna-Mart Engelbrecht ◽  
Anna M Joubert

Current chemotherapeutic agents have many side effects and are toxic to normal cells, providing impetus to identify agents that can effectively eliminate tumorigenic cells without damaging healthy cells. The aim of this study was to examine whether combining a novel BRD4 inhibitor, ITH-47, with the antimitotic estradiol analogue, ESE-15-ol, would have a synergistic effect on inhibiting the growth of two different breast cancer cell lines in vitro. Our docking and molecular dynamics studies showed that compared to JQ1, ITH-47 showed a similar binding mode with hydrogen bonds forming between the ligand nitrogens of the pyrazole, ASN99, and water of the BRD4 protein. Data from cell growth studies revealed that the GI50 of ITH-47 and ESE-15-ol after 48 hours of exposure was determined to be 15 μM and 70 nM, respectively, in metastatic MDA-MB-231 breast cancer cells. In tumorigenic MCF-7 breast cancer cells, the GI50 of ITH-47 and ESE-15-ol was 75 μM and 60 nM, respectively, after 48 hours of exposure. Furthermore, the combination of 7.5 μM and 14 nM of ITH-47 and ESE-15-ol, respectively, resulted in 50% growth inhibition of MDA-MB-231 cells resulting in a synergistic combination index (CI) of 0.7. Flow cytometry studies revealed that, compared to the control, combination-treated MDA-MB-231 cells had significantly more cells present in the sub-G1 phase and the combination treatment induced apoptosis in the MDA-MB-231 cells. Compared to vehicle-treated cells, the combination-treated cells showed decreased levels of the BRD4, as well as c-Myc protein after 48 hours of exposure. In combination, the selective BRD4 inhibitor, ITH-47, and ESE-15-ol synergistically inhibited the growth of MDA-MB-231 breast cancer cells, but not of the MCF-7 cell line. This study provides evidence that resistance to BRD4 inhibitors may be overcome by combining inhibitors with other compounds, which may have treatment potential for hormone-independent breast cancers.


2004 ◽  
Vol 11 (5) ◽  
pp. 309-316 ◽  
Author(s):  
Raquel T Lima ◽  
Luís M Martins ◽  
José E Guimarães ◽  
Clara Sambade ◽  
M Helena Vasconcelos

Sign in / Sign up

Export Citation Format

Share Document