mmp9 expression
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 77)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaobing Liang ◽  
Wanbing He ◽  
Hua Zhang ◽  
Dongling Luo ◽  
Zhengzhipeng Zhang ◽  
...  

Background: Vascular calcification (VC) is an important predictor of prognosis in atherosclerosis, the phenotypic transformation of vascular smooth muscle cells (VSMCs) is thought to be a process of VC. However, the implications and potential mechanisms for VSMCs phenotypic transition remain unknown.Methods: To study the transformation of vascular smooth muscle cells (VSMCs) in the calcification early period, we analyzed single-cell sequencing data from carotid artery calcified core and paracellular tissue, based on the results of enrichment analysis and protein-protein interaction analysis. Upstream transcription factors were tracked and finally the results were validated using the MESA database.Results: We successfully identified a subpopulation of inflammatory macrophage-like VSMCs and determined that MMP9 is an important factor in the phenotypic transformation of VSMCs. We found that RELA regulates MMP9 expression and that knockdown of RELA attenuated MMP9 expression and reduced the expression of BMP2 and the macrophage marker LGALS3 in vascular smooth muscle in inflammatory states, while serum levels of MMP9 correlated significantly with the inflammatory response.Conclusion: This study reveals that the phenotypic transformation of VSMCs can be regulated by modulating MMP9, providing a new idea for the early treatment of VC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Minli Yang ◽  
Yujiao Zhou ◽  
Haijun Deng ◽  
Hongzhong Zhou ◽  
Shengtao Cheng ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. Tumor metastasis is one of the major causes of high mortality of HCC. Identifying underlying key factors contributing to invasion and metastasis is critical to understand the molecular mechanisms of HCC metastasis. Here, we identified RNA binding protein L23 (RPL23) as a tumor metastasis driver in HCC. RPL23 was significantly upregulated in HCC tissues compared to adjacent normal tissues, and closely related to poor clinical outcomes in HCC patients. RPL23 depletion inhibited HCC cell proliferation, migration and invasion, and distant metastasis. Mechanistically, RPL23 directly associated with 3’UTR of MMP9, therefore positively regulated MMP9 expression. In conclusion, we identified that RPL23 might play an important role in HCC metastasis in an MMP9-dependent manner and be a potential therapeutic target for HCC tumorigenesis and metastasis.


Life Sciences ◽  
2021 ◽  
pp. 120235
Author(s):  
Yi Wu ◽  
Suwen Lu ◽  
Xuan Huang ◽  
Yuanyuan Liu ◽  
Kuiyuan Huang ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sattout Aman ◽  
Yanan Li ◽  
Yunmeng Cheng ◽  
Yuxi Yang ◽  
Linlin Lv ◽  
...  

AbstractHuman Dachshund homolog 1 (DACH1) is usually defined as a tumor suppressor, which plays an influential role in tumor growth and metastasis in a variety of cancer cells. However, the underlying mechanisms in these process are not yet fully clarified. In this study, DACH1 inhibited the invasion and metastasis of breast cancer cells by decreasing MMP9 expression. Mechanistically, DACH1 represses the transcriptional level of MMP9 by interacting with p65 and c-Jun at the NF-κB and AP-1 binding sites in MMP9 promoter respectively, and the association of DACH1 and p65 promote the recruitment of HDAC1 to the NF-κB binding site in MMP9 promoter, resulting in the reduction of the acetylation level and the transcriptional activity of p65. Accordingly, the level of MMP9 was decreased. In conclusion, we found a new mechanism that DACH1 could inhibit the metastasis of breast cancer cells by inhibiting the expression of MMP9.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1798
Author(s):  
Florence Njau ◽  
Hermann Haller

Monocyte-to-macrophage differentiation results in the secretion of various inflammatory mediators and oxidative stress molecules necessary for atherosclerosis pathogenesis. Consequently, this differentiation represents a potential clinical target in atherosclerosis. Calcium dobesilate (CaD), an established vasoactive and angioprotective drug in experimental models of diabetic microvascular complications reduces oxidative stress and inhibits inflammation via diverse molecular targets; however, its effect on monocytes/macrophages is poorly understood. In this study, we investigated the anti-inflammatory mechanism of CaD during phorbol 12-myristate 13-acetate (PMA)-induced monocyte-to-macrophage differentiation in in vitro models of sepsis (LPS) and hyperglycemia, using THP-1 monocytic cell line. CaD significantly suppressed CD14, TLR4, and MMP9 expression and activity, lowering pro-inflammatory mediators, such as IL1β, TNFα, and MCP-1. The effects of CaD translated through to studies on primary human macrophages. CaD inhibited reactive oxygen species (ROS) generation, PKCδ, MAPK (ERK1/2 and p38) phosphorylation, NOX2/p47phox expression, and membrane translocation. We used hydrogen peroxide (H2O2) to mimic oxidative stress, demonstrating that CaD suppressed PKCδ activation via its ROS-scavenging properties. Taken together, we demonstrate for the first time that CaD suppresses CD14, TLR4, MMP9, and signature pro-inflammatory cytokines, in human macrophages, via the downregulation of PKCδ/NADPH oxidase/ROS/MAPK/NF-κB-dependent signaling pathways. Our data present novel mechanisms of how CaD alleviates metabolic and infectious inflammation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Chen ◽  
Lu Li ◽  
Xian Liu ◽  
Qian Feng ◽  
Yanru Zhang ◽  
...  

Abstract Background Hexokinases 2 (HK2) is a member of the hexokinases, linking with malignant tumor growth and distant metastasis. However, evidence regarding the potential role of HK2 in regulating cell motility and tumor metastasis during the cervical cancer malignant progression remains limited. Methods In vitro migration and invasion assay, in vivo metastasis experiments were performed to detect the effective of HK2 on regulating cell motility and tumor metastasis in cervical cancer cells. RNA-Seq was performed to explore the potential molecules that participate in HK2-mediated cell motility and tumor metastasis in cervical cancer cells. The correlation between HK2 and Akt1, p-Akt1, FN1 expression in cervical cancer cells and human squamous cervical carcinoma (SCC) samples was verified in this study. Results In this study, cervical cancer cells with exogenous HK2 expression exhibited enhanced cell motility and distant metastasis. Transcriptome sequencing analysis revealed that fibronectin (FN1) was significantly increased in HK2-overexpressing HeLa cells, and the PI3K/Akt signaling pathway was identified by KEGG pathway enrichment analysis. Further studies demonstrated that this promotion of cell motility by HK2 was probably a result of it inducing FN1, MMP2 and MMP9 expression by activating Akt1 in cervical cancer cells. Additionally, HK2 expression was altered with the changing of Akt1/p-Akt1 expression, implying that HK2 expression is also modulated by Akt1/p-Akt1. Moreover, the positive correlation between HK2 and Akt1, p-Akt1, FN1 expression in human squamous cervical carcinoma (SCC) samples was verified by using Pearson correlation analysis. Conclusions This study demonstrated that HK2 could activate Akt1 in cervical cancer cells, subsequently enhancing cell motility and tumor metastasis by inducing FN1, MMP2 and MMP9 expression. There likely exists an interactive regulatory mechanism between HK2 and Akt1 during the malignant process of cervical cancer.


2021 ◽  
Author(s):  
Yongjin Mao ◽  
Chen Su ◽  
Huilin Yang ◽  
Feng Zhao ◽  
Bo Qu ◽  
...  

Abstract Background Matrix metalloproteinase 9 (MMP9) plays a pivotal role in mammary ductal morphogenesis, angiogenesis, and glandular tissue architecture remodeling. However, the molecular mechanism of MMP9 expression in mammary epithelial cells of dairy cows remains unclear. The current study aimed to explore the underlying mechanism of MMP9 expression. Results In this study, to determine whether the PI3K/AKT/mTOR/NF-κB signaling pathway participates in the regulation of MMP9 expression, we treated mammary epithelial cells with specific pharmacological inhibitors of PI3K (LY294002), mTOR (Rapamycin), or NF-κB (Celastrol), respectively. Western blotting results indicated that LY294002, Rapamycin, and Celastrol markedly decreased MMP9 expression and P65 nuclear translocation. Furthermore, we found that NF-κB (P65) overexpression resulted in elevated expression of MMP9 protein and activation of MMP9 promoter. In addition, we observed that Celastrol markedly decreases P65-overexpression-induced MMP9 promoter activity. Moreover, the results of the promoter assay indicated that the core regulation sequence for MMP9 promoter activation may be located -80bp to -420bp downstream from the transcription start site. Conclusions These observations indicated that the PI3K/AKT/mTOR signaling pathway is involved in MMP9 expression by regulating MMP9 promoter activity via NF-κB in the mammary epithelial cells of dairy cows.


Author(s):  
Céline Mamie ◽  
Ramona S. Bruckner ◽  
Silvia Lang ◽  
Nahum Y. Shpigel ◽  
Matthias Turina ◽  
...  

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Ria Aryani Hayuningtyas ◽  
Myeonggil Han ◽  
Seoyeon Choi ◽  
Man Sup Kwak ◽  
In Ho Park ◽  
...  

Abstract Background C1q has been reported to reveal complement-independent roles in immune and non-immune cells. C1q binds to its specific receptors to regulate distinct functions that rely on the environment and cell types. Discoidin domain receptor 2 (DDR2) is activated by collagen and functions in wound healing by controlling matrix metalloproteinase (MMP) expression. Since C1q exhibits a collagen-like structure, we hypothesized that C1q might engage DDR2 to regulate wound healing and extracellular matrix (ECM) remodeling. Methods Cell-based assay, proximity ligation assay, ELISA, and surface plasmon analysis were utilized to investigate DDR2 and C1q binding. We also investigate the C1q-mediated in vitro wound healing ability using the human fibrosarcoma cell line, HT1080. Results C1q induced the phosphorylation of DDR2, p38 kinase, and ERK1/2. C1q and DDR2 binding improved cell migration and induced MMP2 and MMP9 expression. DDR2-specific shRNA reduced C1q-mediated cell migration for wound healing. Conclusions C1q is a new DDR2 ligand that promotes wound healing. These findings have therapeutic implications in wound healing-related diseases.


Sign in / Sign up

Export Citation Format

Share Document