scholarly journals Silibinin Inhibits Established Prostate Tumor Growth, Progression, Invasion, and Metastasis and Suppresses Tumor Angiogenesis and Epithelial-Mesenchymal Transition in Transgenic Adenocarcinoma of the Mouse Prostate Model Mice

2008 ◽  
Vol 14 (23) ◽  
pp. 7773-7780 ◽  
Author(s):  
Rana P. Singh ◽  
Komal Raina ◽  
Girish Sharma ◽  
Rajesh Agarwal
2019 ◽  
Vol 316 (4) ◽  
pp. C463-C480 ◽  
Author(s):  
Xi Hong ◽  
Jian-Jun Yu

Prostate cancer (PCa) remains one of the leading causes of cancer-related deaths among males. The aim of the current study was to investigate the ability of microRNA-150 (miR-150) targeting transient receptor potential melastatin 4 (TRPM4) to mediate epithelial-mesenchymal transition (EMT), invasion, and metastasis through the β-catenin signaling pathway in PCa. Microarray analysis was performed to identify PCa-related differentially expressed genes, after which both the mirDIP and TargetScan databases were employed in the prediction of the miRNAs regulating TRPM4. Immunohistochemistry and RT-qPCR were conducted to determine the expression pattern of miR-150 and TRPM4 in PCa. The relationship between miR-150 and TRPM4 expression was identified. By perturbing miR-150 and TRPM4 expression in PCa cells, cell proliferation, migration, invasion, cycle, and apoptosis as well as EMT markers were determined accordingly. Finally, tumor growth and metastasis were evaluated among nude mice. Higher TRPM4 expression and lower miR-150 expression and activation of the β-catenin signaling pathway as well as EMT stimulation were detected in the PCa tissues. Our results confirmed TRPM4 as a target of miR-150. Upregulation of miR-150 resulted in inactivation of the β-catenin signaling pathway. Furthermore, the upregulation of miR-150 or knockdown of TRPM4 was observed to suppress EMT, proliferation, migration, and invasion in vitro in addition to restrained tumor growth and metastasis in vivo. The evidence provided by our study highlights the involvement of miR-150 in the translational suppression of TRPM4 and the blockade of the β-catenin signaling pathway, resulting in the inhibition of PCa progression.


2021 ◽  
Author(s):  
Zhen-Nan Li ◽  
Cheng Lu ◽  
Feng-Liang Wang ◽  
Hao-Wei Guo ◽  
Zhi-Peng Wang ◽  
...  

Abstract Background Insufficient thermal ablation can cause accelerated malignant behaviors and increased metastasis in hepatocellular carcinoma (HCC), and epithelial-mesenchymal transition (EMT) and autophagy are implicated in tumor metastasis. However, whether interactions between autophagy and TGF-β2 induce EMT in breast cancer (BC) after insufficient microwave ablation (MWA) remains unclear. Methods In this study, we treated BC cells with sublethal heat treatment for simulating insufficient MWA, and then the effect of heat treatment on the BC cell phenotypes were explored. CCK-8, colony formation, flow cytometry, transwell and wound healing assays were performed to evaluate the influence of sublethal heat treatment on the proliferation, apoptosis, invasion and migration of BC cells treated with/without autophagy inhibitors. Western blotting, real-time quantitative PCR, immunofluorescence and transmission electron microscopy were carried out to determine the changes of markers associated with autophagy and EMT after sublethal heat treatment. Xenograft models in mice were established by using sublethal heat treated BC cells to investigate the effect of autophagy inhibitor on BC tumor growth in vivo. Results Results showed that heat treatment promoted the proliferation of survived BC cells, which was accompanied by autophagy induction. Heat treatment-induced autophagy up-regulated TGF-β2/Smad2 signaling and promoted phenotype of EMT, thereby enhancing abilities of migration and invasion in BC cells. Increase or decrease of TGF-β2 expression resulted in potentiation and suppression of autophagy as well as enhancement and abatement of EMT. Autophagy inhibitor facilitated apoptosis and repressed proliferation of BC cells in vitro, and thwarted BC cell tumor growth and pulmonary metastasis in vivo. Conclusions This study indicate that heat treatment-induced autophagy promotes invasion and metastasis via TGF-β2/Smad2-mediated EMT. Suppressing autophagy might be a new strategy for overcoming sufficient MWA caused progression and metastasis of residual BC cells.


Oncotarget ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 1703-1713 ◽  
Author(s):  
Tianxiu Dong ◽  
Yu Zhang ◽  
Yaodong Chen ◽  
Pengfei Liu ◽  
Tingting An ◽  
...  

2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2021 ◽  
Vol 12 (20) ◽  
pp. 6058-6070
Author(s):  
Xin Li ◽  
Zhou-Sheng Yang ◽  
Wen-Wu Cai ◽  
Yang Deng ◽  
Lei Chen ◽  
...  

2018 ◽  
Author(s):  
Deli Hong ◽  
Andrew J. Fritz ◽  
Kristiaan H. Finstad ◽  
Mark P. Fitzgerald ◽  
Adam L. Viens ◽  
...  

SummaryRecent studies have revealed that mutations in the transcription factor Runx1 are prevalent in breast tumors. Yet, how loss of Runx1 contributes to breast cancer (BCa) remains unresolved. We demonstrate for the first time that Runx1 represses the breast cancer stem cell (BCSC) phenotype and consequently, functions as a tumor suppressor in breast cancer. Runx1 ectopic expression in MCF10AT1 and MCF10CA1a BCa cells reduces (60%) migration, invasion and in vivo tumor growth in mouse mammary fat pad (P<0.05). Runx1 is decreased in BCSCs, and overexpression of Runx1 suppresses tumorsphere formation and reduces the BCSC population. Furthermore, Runx1 inhibits Zeb1 expression, while Runx1 depletion activates Zeb1 and the epithelial-mesenchymal transition. Mechanistically Runx1 functions as a tumor suppressor in breast cancer through repression of cancer stem cell activity. This key regulation of BCSCs by Runx1 may be shared in other epithelial carcinomas, highlighting the importance of Runx1 in solid tumors.


Sign in / Sign up

Export Citation Format

Share Document