scholarly journals A Novel Nanoparticulate Formulation of Arsenic Trioxide with Enhanced Therapeutic Efficacy in a Murine Model of Breast Cancer

2010 ◽  
Vol 16 (14) ◽  
pp. 3607-3617 ◽  
Author(s):  
Richard W. Ahn ◽  
Feng Chen ◽  
Haimei Chen ◽  
Stephan T. Stern ◽  
Jeffrey D. Clogston ◽  
...  
2011 ◽  
Author(s):  
Richard W. Ahn ◽  
Elden P. Swindell ◽  
Ninh B. Doan ◽  
Andrey Ugolkov ◽  
Dmitry Malin ◽  
...  

2008 ◽  
Vol 16 (7-8) ◽  
pp. 605-610 ◽  
Author(s):  
Kimberley M. Laginha ◽  
Elaine H. Moase ◽  
Ning Yu ◽  
Anthony Huang ◽  
T. M. Allen

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3281
Author(s):  
Syed Sarim Imam ◽  
Sultan Alshehri ◽  
Mohammad A. Altamimi ◽  
Afzal Hussain ◽  
Wajhul Qamar ◽  
...  

The present research work is designed to prepare and evaluate piperine liposomes and piperine–chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (−7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hanyi Fang ◽  
Yongkang Gai ◽  
Sheng Wang ◽  
Qingyao Liu ◽  
Xiao Zhang ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is a kind of aggressive breast cancer with a high rate of metastasis, poor overall survival time, and a low response to targeted therapies. To improve the therapeutic efficacy and overcome the drug resistance of TNBC treatments, here we developed the cancer cell membrane-coated oxygen delivery nanoprobe, CCm–HSA–ICG–PFTBA, which can improve the hypoxia at tumor sites and enhance the therapeutic efficacy of the photodynamic therapy (PDT), resulting in relieving the tumor growth in TNBC xenografts. Results The size of the CCm–HSA–ICG–PFTBA was 131.3 ± 1.08 nm. The in vitro 1O2 and ROS concentrations of the CCm–HSA–ICG–PFTBA group were both significantly higher than those of the other groups (P < 0.001). In vivo fluorescence imaging revealed that the best time window was at 24 h post-injection of the CCm–HSA–ICG–PFTBA. Both in vivo 18F-FMISO PET imaging and ex vivo immunofluorescence staining results exhibited that the tumor hypoxia was significantly improved at 24 h post-injection of the CCm–HSA–ICG–PFTBA. For in vivo PDT treatment, the tumor volume and weight of the CCm–HSA–ICG–PFTBA with NIR group were both the smallest among all the groups and significantly decreased compared to the untreated group (P < 0.01). No obvious biotoxicity was observed by the injection of CCm–HSA–ICG–PFTBA till 14 days. Conclusions By using the high oxygen solubility of perfluorocarbon (PFC) and the homologous targeting ability of cancer cell membranes, CCm–HSA–ICG–PFTBA can target tumor tissues, mitigate the hypoxia of the tumor microenvironment, and enhance the PDT efficacy in TNBC xenografts. Furthermore, the HSA, ICG, and PFC are all FDA-approved materials, which render the nanoparticles highly biocompatible and enhance the potential for clinical translation in the treatment of TNBC patients.


1993 ◽  
Vol 67 (8) ◽  
pp. 580-585 ◽  
Author(s):  
Helmut Kreppel ◽  
Uwe Paepcke ◽  
Horst Thiermann ◽  
Ladislaus Szinicz ◽  
Franz X. Reichl ◽  
...  

2015 ◽  
Vol 9 (5) ◽  
pp. 1887-1894 ◽  
Author(s):  
MAO-LIN HAO ◽  
NING PAN ◽  
QING-HUA ZHANG ◽  
XIAO-HONG WANG

2004 ◽  
Vol 20 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Pinku Mukherjee ◽  
Teresa L. Tinder ◽  
Gargi D. Basu ◽  
Latha B. Pathangey ◽  
Lieping Chen ◽  
...  

2009 ◽  
Vol 118 (3) ◽  
pp. 469-480 ◽  
Author(s):  
Valeria C. Grossoni ◽  
Laura B. Todaro ◽  
Marcelo G. Kazanietz ◽  
Elisa D. Bal de Kier Joffé ◽  
Alejandro J. Urtreger

2020 ◽  
Vol 8 (9S) ◽  
pp. 140-141
Author(s):  
Benjamin Thomas ◽  
Jan Warzsawski ◽  
Florian Falkner ◽  
Amir K. Bigdeli ◽  
Boyan K. Garvalov ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A788-A788
Author(s):  
Xiuning Le ◽  
Minghao Dang ◽  
Venkatesh Hegde ◽  
Bo Jiang ◽  
Ravaen Slay ◽  
...  

BackgroundHuman papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HPV+ HNSCC) is a disease that has moderate response to anti-PD-1/L1 immune checkpoint blockade, with the response rates less than 20% and median progression-free survival less than 3 months. A greater understanding of tumor intrinsic and extrinsic factors that restrict anti-tumor immunity in the tumor immune microenvironment (TIME) is needed to identify other immune checkpoints to enhance therapeutic efficacy.MethodsTwo cohorts (TCGA n=72 and a separate cohort n=84) of surgically resected, treatment-naïve HPV+ HNSCC with RNA-seq were analyzed to understand the immune features. In addition, single-cell RNA-seq and TCR-seq were performed on 18 cases to further delineate the immune molecules' interactions. An immune-competent murine HPV+ HNSCC model was used to preliminarily evaluate the therapeutic efficacy.ResultsIn two bulk-sequenced HPV+ HNSCC cohorts, TIGIT ligands PVR and NECTIN2 were found to associate with an epithelial-to-mesenchymal gene expression signature, suppression of IFNα and IFNγ signaling, a stromal-enriched or immune-excluded TIME, and poor survival. Single-cell RNA-seq of over 72,000 cells of HPV+ HNSCC revealed that the PVR/NECTIN ligand TIGIT was highly prevalent in T-cells (34%), significantly higher than PD1- (20%, p<0.01). There is an enrichment of cell-cell interactions mediated by TIGIT-PVR/NECTIN2 in the TIME of HPV+HNSCC versus normal tonsil. TIGIT was the most differentially upregulated immune checkpoint on clonally expanded CD8+T-cells and was abundant on antigen-experienced, tissue-resident memory CD8+T-cell and T-regulatory subsets. TIGIT ligands PVR, NECTIN1, and NECTIN2 were abundant on mature regulatory dendritic cells (DCs), immunosuppressive plasmacytoid (p)DCs, and macrophages, respectively. TIGIT and PD-1 co-blockade in the mEER syngeneic murine model significantly reduced tumor growth, improved survival, restored effector function of HPV16E7-specific CD8+T cells, natural killer cells, and DCs, and conferred tumor re-challenge protection.ConclusionsTIGIT-PVR/NECTIN receptors/ligands are more abundant than PD-1/L1 in the TIME of HPV+ HNSCC. Co-blockade of TIGIT and PD-1 immune checkpoints enhanced anti-tumor efficacy in a CD8+ T-cell-dependent manner and conferred long-term immune protection in a murine model. Our study nominates TIGIT as a therapeutic target for HPV+ HNSCC.


Sign in / Sign up

Export Citation Format

Share Document