The role of spermidine/spermine N1-acetyltransferase in determining response to chemotherapeutic agents in colorectal cancer cells

2007 ◽  
Vol 6 (1) ◽  
pp. 128-137 ◽  
Author(s):  
Wendy L. Allen ◽  
Estelle G. McLean ◽  
John Boyer ◽  
Andrea McCulla ◽  
Peter M. Wilson ◽  
...  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yasamin Dabiri ◽  
Sara Kalman ◽  
Clara-Marie Gürth ◽  
Jee Young Kim ◽  
Viola Mayer ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. 629-638
Author(s):  
N. N. Bahari ◽  
S. Y. N. Jamaludin ◽  
A. H. Jahidin ◽  
M. N. Zahary ◽  
A. B. Mohd Hilmi

The transient receptor potential vanilloid member 4 (TRPV4) is a non-selective calcium (Ca2+)-permeable channel which is widely expressed in different types of tissues including the lungs, liver, kidneys and salivary gland. TRPV4 has been shown to serve as a cellular sensor where it is involved in processes such as osmoregulation, cell volume regulation and thermoregulation. Emerging evidence suggests that TRPV4 also plays important roles in several aspects of cancer progression. Despite the reported roles of TRPV4 in several forms of cancers, the role of TRPV4 in human colorectal cancer remains largely unexplored. In the present study, we sought to establish the potential role of TRPV4 in colorectal cancer by assessing TRPV4 expression levels and investigating whether TRPV4 pharmacological modulation may alter cell proliferation, cell cycle and cell death in colorectal cancer cells. Quantitative real-time PCR analysis revealed that TRPV4 mRNA levels were significantly lower in HT-29 cells than normal colon CCD-18Co cells. However, TRPV4 mRNA was absent in HCT-116 cells. Pharmacological activation of TRPV4 with GSK1016790A significantly enhanced the proliferation of HT-29 cells while TRPV4 inhibition using RN 1734 decreased their proliferation. Increased proliferation in GSK1016790A-treated HT-29 cells was attenuated by co-treatment with RN 1734. Pharmacological modulation of TRPV4 had no effect on the cell cycle progression but promoted cell death in HT-29 cells. Taken together, these findings suggest differential TRPV4 expression levels in human colorectal cancer cells and that pharmacological modulation of TRPV4 produces distinct effects on the proliferation and induces cell death in HT-29 cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Wanjuan Xue ◽  
Yongcheng Liu ◽  
Ningning Xin ◽  
Jiyu Miao ◽  
Juan Du ◽  
...  

The study is aimed at investigating the role of Nei endonuclease VIII-like1 (NEIL1) in the pathogenesis of colorectal cancer (CRC). The human CRC (HCT116 and SW480) cells were subjected to the siRNA silencing and recombinant plasmid overexpression of NEIL1. Transfection of siNEIL1 significantly inhibited the cell growth. It also increased the Bax expression levels, while it decreased the Bcl-2 expression levels in human CRC cells, leading the Bax/Bcl-2 balance toward apoptosis. Moreover, the apoptosis was promoted through the caspase-9 signaling pathway. One the other hand, high expression of NEIL1 promoted the cell viability and reduced the apoptosis, inducing the balance of Bax/Bcl-2 in the human colon cancer cells to be antiapoptotic. In addition, the caspase-9 signaling pathway inhibited apoptosis, contrary to the results obtained by downregulating NEIL1 expression. Furthermore, NEIL1 was negatively regulated by miR-7-5p, indicating that miR-7-5p inhibited the NEIL1 expression after transcription. Overexpression of miR-7-5p reversed the effects of NEIL1 on these CRC cells. In conclusion, NEIL1 promotes the proliferation of CRC cells, which is regulated negatively by miR-7-5p. These findings suggest that NEIL1 is a potential therapeutic target for CRC.


2006 ◽  
Vol 14 (4) ◽  
pp. 693-702 ◽  
Author(s):  
F Comes ◽  
A Matrone ◽  
P Lastella ◽  
B Nico ◽  
F C Susca ◽  
...  

2015 ◽  
Vol 55 (5) ◽  
pp. 1002-1011 ◽  
Author(s):  
Mei Xu ◽  
Siying Wang ◽  
Yuanlin Qi ◽  
Li Chen ◽  
Jacqueline A. Frank ◽  
...  

2015 ◽  
Vol 43 (13) ◽  
pp. 6257-6269 ◽  
Author(s):  
Zhongcheng Shi ◽  
Chi-I Chiang ◽  
Paul Labhart ◽  
Yanling Zhao ◽  
Jianhua Yang ◽  
...  

2015 ◽  
Vol 26 (9) ◽  
pp. 942-947 ◽  
Author(s):  
Andrius K. Planutis ◽  
Randall F. Holcombe ◽  
Marina V. Planoutene ◽  
Kiastoutis S. Planoutis

Sign in / Sign up

Export Citation Format

Share Document