scholarly journals Bisphosphonamidate Clodronate Prodrug Exhibits Selective Cytotoxic Activity against Melanoma Cell Lines

2013 ◽  
Vol 13 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Marie R. Webster ◽  
Chandrashekhar Kamat ◽  
Nick Connis ◽  
Ming Zhao ◽  
Ashani T. Weeraratna ◽  
...  
2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 12019-12019 ◽  
Author(s):  
S. Radulovic ◽  
S. Bjelogrlic ◽  
Z. Todorovic ◽  
M. Prostran

12019 Background: PARP-1 facilitates DNA strand brakes repair and PARP inhibitors were investigated as enhancers of chemoradiotherapy. We investigated whether 5-AIQ potentates the effect of doxorubicin (DOXO), cisplatin (CDDP) and paclitaxel (Ptx) on human (slow-growing) FemX and murine (fast-growing) B16 melanoma cell lines. Methods: Twenty-four hours after cells were seeded in 96 well plates, cytotoxic drugs and 5-AIQ were added to cell medium. For evaluation of single-agent activity, drugs were applied in concentration ranges as follows: CDDP (0.3–30 μM), DOXO (0.1–3 μM), Ptx (1–100 ηM), 5-AIQ (1–100 μM). 5-AIQ (3μM) was combined with CDDP (0.1, 0.3, 1 μM), DOXO (10, 3, 100 ηM), or Ptx (1, 3, 10 ηM). Incubation lasted for 72 hrs when SRB assay was utilized to determine individual and combine activity (interactions calculated with isobole method). For cell cycle analysis B16 cells were seeded on 6 well plates and treated with each drug alone and combinations, using the same concentrations as those for investigation of combine cytotoxic activity. Cell cycle was determined after 72 hrs, on FACS Calibur with propidium iodide dye. Results: 5-AIQ induced minimal changes in cell viability and cell cycle progression on both cell lines, compared to non-treated control. CDDP revealed high activity against FemX (IC50 = 2.85 μM) and B16 cells (IC50 = 8.84 μM), and G0/G1 arrest. In B16 cells 5-AIQ multiply enhanced CDDP’s activity with strong synergistic interaction and cells slightly driven to S phase. Synergism was also detected on B16 cells treated with combination of DOXO (IC50 = 0.2 μM on B16 and 0.89 μM on FemX) and 5-AIQ when DOXO was applied in low concentrations (10 and 30 ηM), while 5-AIQ did not interfere with cell cycle changes. Cytotoxicity of Ptx (IC50 = 6.16 ηM on B16 and <1 ηM on FemX) was stimulated only at higher concentrations. 5-AIQ stimulated G0/G1 and S phase arrest on B16 cells with Ptx of 3 and 10 ηM, respectively. In FemX cells, most of the interactions of 5-AIQ with CDDP, DOXO, and Ptx revealed as antagonistic. Conclusions: PARP-1 inhibitor 5-AIQ enhances cytotoxic activity of both DNA damaging and agents with different mechanism of action, but the effect varies between cell lines with different proliferation rate. No significant financial relationships to disclose.


Author(s):  
Nizami Duran ◽  
Gulay Gulbol Duran ◽  
Emrah Ay ◽  
Durmus Alpaslan Kaya ◽  
Madalina Georgiana Albu Kaya ◽  
...  

1996 ◽  
Vol 7 (5) ◽  
pp. 604-612 ◽  
Author(s):  
Rosanna Supino ◽  
Claudia Caserini ◽  
Linda Orlandi ◽  
Nadia Zaffaroni ◽  
Rosella Silvestrini ◽  
...  

Author(s):  
Sara Huerta-Yepez ◽  
S. Ekmekcioglu ◽  
C. M. Rivera-Pazos ◽  
G. Antonio-Andres ◽  
Mario I. Vega ◽  
...  

Author(s):  
Roberto Campagna ◽  
Eleonora Salvolini ◽  
Veronica Pompei ◽  
Valentina Pozzi ◽  
Alessia Salvucci ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 537
Author(s):  
Paula Wróblewska-Łuczka ◽  
Aneta Grabarska ◽  
Magdalena Florek-Łuszczki ◽  
Zbigniew Plewa ◽  
Jarogniew J. Łuszczki

(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. (2) An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on two human melanoma cell lines (FM55P and FM55M2) examined the antitumor properties of CDDP and five naturally occurring coumarins (osthole, xanthotoxin, xanthotoxol, isopimpinellin, and imperatorin). The antiproliferative effects produced by combinations of CDDP with the coumarins were assessed using type I isobolographic analysis. (3) The most potent anticancer properties of coumarins were presented by osthole and xanthotoxol. These compounds were characterized by the lowest median inhibitory concentration (IC50) values relative to the FM55P and FM55M2 melanoma cells. Isobolographic analysis showed that for both melanoma cell lines, the combination of CDDP and osthole exerted synergistic and additive interactions, while the combination of CDDP and xanthotoxol exerted additive interactions. Combinations of CDDP with xanthotoxin, isopimpinellin, and imperatorin showed antagonistic and additive interactions in two melanoma cell lines. (4) The combination of CDDP and osthole was characterized by the most desirable synergistic interaction. Isobolographic analysis allows the selection of potential candidates for cancer drugs among natural substances.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2012
Author(s):  
Kathryn M. Appleton ◽  
Charuta C. Palsuledesai ◽  
Sean A. Misek ◽  
Maja Blake ◽  
Joseph Zagorski ◽  
...  

The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.


Sign in / Sign up

Export Citation Format

Share Document