Doxycycline as an Inhibitor of the Epithelial-to-Mesenchymal Transition and Vasculogenic Mimicry in Hepatocellular Carcinoma

2014 ◽  
Vol 13 (12) ◽  
pp. 3107-3122 ◽  
Author(s):  
Jie Meng ◽  
Baocun Sun ◽  
Xiulan Zhao ◽  
Danfang Zhang ◽  
Xueming Zhao ◽  
...  
2021 ◽  
Vol 22 (4) ◽  
pp. 1700
Author(s):  
Jihye Seo ◽  
Jain Ha ◽  
Eunjeong Kang ◽  
Haelim Yoon ◽  
Sewoong Lee ◽  
...  

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In the present study, wound healing screening assays were performed using natural product libraries to identify natural chemicals that can inhibit cancer cell migration. Glaucarubinone (GCB) showed a high potential for inhibiting cell migration. The anti-cancer effects of GCB were evaluated using the HCC cell line, Huh7. GCB showed anti-cancer effects, as verified by wound healing, cell migration, invasion, colony formation, and three-dimensional spheroid invasion assays. In addition, cells treated with GCB showed suppressed matrix metalloproteinase activities. Immunoblotting analyses of intracellular signaling pathways revealed that GCB regulated the levels of Twist1, a crucial transcription factor associated with epithelial-to-mesenchymal transition, and mitogen-activated protein kinase. The invasive ability of cancer cells was found to be decreased by the regulation of Twist1 protein levels. Furthermore, GCB downregulated phosphorylation of extracellular signal-regulated kinase. These results indicate that GCB exhibits anti-metastatic properties in Huh7 cells, suggesting that it could be used to treat HCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Wenbing Sun ◽  
Shuqi Fu ◽  
Size Wu ◽  
Rong Tu

Metastasis is the prominent cause of death in patients with hepatocellular carcinoma (HCC); however, the mechanisms behind HCC metastasis are not well understood. MicroRNAs (miRs) can regulate gene expression and affect HCC metastasis. Exosomes can transport miRs and other cargoes to and from different cells, thus being associated with tumour-distant metastasis. Exosomal miRs involve different processes of HCC metastasis through their functional effects, such as their induction of epithelial-to-mesenchymal transition, angiogenesis, and distant niche. In this review, data from the literature were analysed and summarised, with a focus on the evidence extraction of exosomal miRs in HCC metastasis with the purpose of increasing the understanding of the mechanisms behind HCC metastasis and acquiring implications for application.


Sign in / Sign up

Export Citation Format

Share Document