Abstract 195: Cell death pathway activation during monocytic / macrophagic differentiation of hematopoietic tumor cell lines

Author(s):  
João de Séllos ◽  
Mauricio S. Caetano ◽  
Erika Carvalho ◽  
Gustavo P. Amarante-Mendes ◽  
Carlos G. Ferreira ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4926-4926
Author(s):  
Kelly J Walkovich ◽  
Xuwen Liu ◽  
Anne L McCollom ◽  
Colin S Duckett

Abstract Abstract 4926 CD30 is a member of the tumor necrosis factor (TNF) receptor family that is normally found on the cell surface of a small subset of activated lymphocytes but is overexpressed on the surface of anaplastic large cell lymphoma (ALCL) and Hodgkins lymphoma (HL) cells. Although many drugs exist that treat lymphomas by triggering the intrinsic cell death pathway, current chemotherapeutic regimens are limited by unwanted side effects, including secondary malignancies that limit event-free survival. The tumor-restricted overexpression of CD30 makes it an attractive target for therapeutic intervention. Depending on the cellular context, CD30 stimulation has been linked to cell death, cell cycle arrest, or paradoxically, proliferation. In ALCL tumor cell lines, CD30 stimulation activates both the canonical and noncanonical NF-kB pathways while in HL tumor cell lines, CD30 stimulation only slightly enhances NF-kB activity above constitutive levels, implying a role for NF-kB in determining the sensitivity or resistance of lymphoma cells to CD30-induced apoptosis. In addition, IAP antagonists, small synthetic compounds that mimic the structure of the second mitochondrial activator of caspase (Smac) and target IAP molecules that affect the activation of the non-canonical NF-kB pathway, induce apoptosis and/or sensitize cells to death via secondary signals such as TNF. This suggests that the modulation of IAP levels, and consequently regulation of the non-canonical NF-kB pathways, may also have a role in determining tumor cell death. Using representative ALCL and HL tumor cell lines, we have found that CD30 stimulation via its physiologically ligand in combination with standard chemotherapeutic agents results in increased efficacy in tumor cell death in the majority of ALCL cell lines but not HL cell lines. Similarly, IAP antagonists in combination with standard chemotherapeutic agents also resulted in enhanced tumor cell death in most ALCL but not HL cell lines. This augmentation of tumor cell death suggests that CD30-induced apoptosis and IAP antagonist-induced killing may have important consequences in the clinical treatment of CD30 positive malignancies. Currently, we are further investigating the role of both CD30 stimulation via its physiological ligand and IAP antagonists in impacting the activation of the canonical and noncanonical NF-kB pathways alone and in combination with currently utilized chemotherapeutic agents to modulate the apoptotic threshold in CD30 positive lymphoma cells. Disclosures: No relevant conflicts of interest to declare.


Oncogene ◽  
2002 ◽  
Vol 21 (30) ◽  
pp. 4613-4625 ◽  
Author(s):  
Karuppiah Muthumani ◽  
Donghui Zhang ◽  
Daniel S Hwang ◽  
Sagar Kudchodkar ◽  
Nathanael S Dayes ◽  
...  

2014 ◽  
Vol 20 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Luigi Leanza ◽  
Paul O’Reilly ◽  
Anne Doyle ◽  
Elisa Venturini ◽  
Mario Zoratti ◽  
...  

2011 ◽  
Vol 2 (3) ◽  
pp. 419-422 ◽  
Author(s):  
VESNA BUCAN ◽  
CLAUDIA Y.U. CHOI ◽  
ANDREA LAZARIDIS ◽  
PETER M. VOGT ◽  
KERSTIN REIMERS

2015 ◽  
Vol 29 (5) ◽  
pp. 1026-1033 ◽  
Author(s):  
Giovanna Barbarini Longato ◽  
Giovanna Francisco Fiorito ◽  
Débora Barbosa Vendramini-Costa ◽  
Ilza Maria de Oliveira Sousa ◽  
Sirlene Valério Tinti ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1711-1711
Author(s):  
Xiaoming Li ◽  
Tabitha E Wood ◽  
Remco Sprangers ◽  
Xinliang Mao ◽  
Xiaoming Wang ◽  
...  

Abstract The proteasome is an enzymatic complex that rids cells of excess and misfolded proteins and possesses chymotrypin, trypsin, and caspase-like enzymatic activity. To date, all of the proteasome inhibitors approved for clinical use or in clinical trials inhibit the complex competitively by binding the active sites of the enzymes. Here, we report a novel chemical proteasome inhibitor that binds the alpha subunits of the 20S proteasome and inhibits the complex non-competitively through a dual copper-dependent and independent mechanism. In a screen of a focused chemical library for novel proteasome inhibitors, we identified 5-amino-8-hydroxyquinoline (5AHQ). When added to myeloma or leukemia intact cells or cell extracts, 5AHQ inhibited the enzymatic activity of the proteasome at low micromolar concentrations. In order to obtain further insight into the mechanism of action of 5AHQ, we carried out a kinetic analysis of inhibition of the enzymatic activity of purified T. Acidophilium proteasome. By Lineweaver-Burk plot analysis, 5AHQ inhibited the proteasome non-competitively. Next, we investigated the binding of 5AHQ to the proteasome. By NMR analysis, 5AHQ bound the half-proteasome complex comprised of a pair of α-rings, α7-α7, and clear spectral changes were observed that localized to residues Ile159, Val113, Val87, Val82, Leu112, Val89, Val134, Val24 and Leu136 inside the antechamber. In contrast, the competitive inhibitor MG132 that binds the proteolytic chamber did not produce any changes in spectra of α7-α7, as expected. 5AHQ bound copper in a 2:1 stoichiometry with a logβ′ value of 9.09, and the addition of copper to 5AHQ enhanced 5AHQ-mediated inhibition of the proteasome. However, binding intracellular copper was not sufficient to explain the effects of 5AHQ on the proteasome as analogues of 5AHQ that did not bind copper continued to inhibit the proteasome, copper-binding molecules not structurally related to 5AHQ did not affect the proteasome, and 5AHQ inhibited isolated proteasomes in buffers devoid of copper and other heavy metals. Given the effects of 5AHQ on the proteasome, we examined the effects of this molecule on the viability of leukemia and myeloma cell lines. Leukemia, myeloma and solid tumor cell lines were treated with increasing concentrations of 5AHQ for 72 hours and cell viability was measured by the MTS assay. 5AHQ induced cell death in 9/9 myeloma, 6/10 leukemia, and 3/10 solid tumor cell lines with an LD50 ≤5 uM. Cell death was confirmed by Annexin V staining. Consistent with its mechanism of action as a proteasome inhibitor, the ability of 5AHQ to induce cell death matched its ability to inhibit the proteasome. In addition, 5AHQ-mediated cell death was associated with inhibition of the NF-kappaB signalling pathway. As 5AHQ induced cell death in malignant cells, we evaluated the effects of oral 5AHQ in 3 mouse models of leukemia. Sublethally irradiated NOD-SCID mice were injected subcutaneously with OCI-AML2 or K562 human leukemia cells or intraperitoneally with MDAY-D2 murine leukemia cells. After tumor implantation, mice were treated with 5AHQ (50 mg/kg/day) or buffer control by oral gavage. Oral 5AHQ decreased tumor weight and volume in all 3 mouse models compared to control without causing weight loss or gross organ toxicity. In summary, we have identified a new strategy for inhibition of the proteasome and a lead for a new therapeutic agent for the treatment of hematologic malignancies.


2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 820-820
Author(s):  
Yvonne A.R. White ◽  
Alan L. Johnson ◽  
Dori C. Woods

2003 ◽  
Vol 17 (4) ◽  
pp. 103-107 ◽  
Author(s):  
Chia-Ni Li ◽  
Hui-Lun Hsu ◽  
Tsu-Lan Wu ◽  
Kuo-Chien Tsao ◽  
Chien-Feng Sun ◽  
...  

2018 ◽  
Vol 120 (6) ◽  
pp. 9608-9623 ◽  
Author(s):  
Wagner D. Vital ◽  
Heron F. V. Torquato ◽  
Larissa de Oliveira Passos Jesus ◽  
Wagner Alves de Souza Judice ◽  
Maria Fátima das G. F. da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document