Correlation between Potassium Channel Expression and Sensitivity to Drug-induced Cell Death in Tumor Cell Lines

2014 ◽  
Vol 20 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Luigi Leanza ◽  
Paul O’Reilly ◽  
Anne Doyle ◽  
Elisa Venturini ◽  
Mario Zoratti ◽  
...  
Oncogene ◽  
2002 ◽  
Vol 21 (30) ◽  
pp. 4613-4625 ◽  
Author(s):  
Karuppiah Muthumani ◽  
Donghui Zhang ◽  
Daniel S Hwang ◽  
Sagar Kudchodkar ◽  
Nathanael S Dayes ◽  
...  

2011 ◽  
Vol 2 (3) ◽  
pp. 419-422 ◽  
Author(s):  
VESNA BUCAN ◽  
CLAUDIA Y.U. CHOI ◽  
ANDREA LAZARIDIS ◽  
PETER M. VOGT ◽  
KERSTIN REIMERS

2015 ◽  
Vol 29 (5) ◽  
pp. 1026-1033 ◽  
Author(s):  
Giovanna Barbarini Longato ◽  
Giovanna Francisco Fiorito ◽  
Débora Barbosa Vendramini-Costa ◽  
Ilza Maria de Oliveira Sousa ◽  
Sirlene Valério Tinti ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1711-1711
Author(s):  
Xiaoming Li ◽  
Tabitha E Wood ◽  
Remco Sprangers ◽  
Xinliang Mao ◽  
Xiaoming Wang ◽  
...  

Abstract The proteasome is an enzymatic complex that rids cells of excess and misfolded proteins and possesses chymotrypin, trypsin, and caspase-like enzymatic activity. To date, all of the proteasome inhibitors approved for clinical use or in clinical trials inhibit the complex competitively by binding the active sites of the enzymes. Here, we report a novel chemical proteasome inhibitor that binds the alpha subunits of the 20S proteasome and inhibits the complex non-competitively through a dual copper-dependent and independent mechanism. In a screen of a focused chemical library for novel proteasome inhibitors, we identified 5-amino-8-hydroxyquinoline (5AHQ). When added to myeloma or leukemia intact cells or cell extracts, 5AHQ inhibited the enzymatic activity of the proteasome at low micromolar concentrations. In order to obtain further insight into the mechanism of action of 5AHQ, we carried out a kinetic analysis of inhibition of the enzymatic activity of purified T. Acidophilium proteasome. By Lineweaver-Burk plot analysis, 5AHQ inhibited the proteasome non-competitively. Next, we investigated the binding of 5AHQ to the proteasome. By NMR analysis, 5AHQ bound the half-proteasome complex comprised of a pair of α-rings, α7-α7, and clear spectral changes were observed that localized to residues Ile159, Val113, Val87, Val82, Leu112, Val89, Val134, Val24 and Leu136 inside the antechamber. In contrast, the competitive inhibitor MG132 that binds the proteolytic chamber did not produce any changes in spectra of α7-α7, as expected. 5AHQ bound copper in a 2:1 stoichiometry with a logβ′ value of 9.09, and the addition of copper to 5AHQ enhanced 5AHQ-mediated inhibition of the proteasome. However, binding intracellular copper was not sufficient to explain the effects of 5AHQ on the proteasome as analogues of 5AHQ that did not bind copper continued to inhibit the proteasome, copper-binding molecules not structurally related to 5AHQ did not affect the proteasome, and 5AHQ inhibited isolated proteasomes in buffers devoid of copper and other heavy metals. Given the effects of 5AHQ on the proteasome, we examined the effects of this molecule on the viability of leukemia and myeloma cell lines. Leukemia, myeloma and solid tumor cell lines were treated with increasing concentrations of 5AHQ for 72 hours and cell viability was measured by the MTS assay. 5AHQ induced cell death in 9/9 myeloma, 6/10 leukemia, and 3/10 solid tumor cell lines with an LD50 ≤5 uM. Cell death was confirmed by Annexin V staining. Consistent with its mechanism of action as a proteasome inhibitor, the ability of 5AHQ to induce cell death matched its ability to inhibit the proteasome. In addition, 5AHQ-mediated cell death was associated with inhibition of the NF-kappaB signalling pathway. As 5AHQ induced cell death in malignant cells, we evaluated the effects of oral 5AHQ in 3 mouse models of leukemia. Sublethally irradiated NOD-SCID mice were injected subcutaneously with OCI-AML2 or K562 human leukemia cells or intraperitoneally with MDAY-D2 murine leukemia cells. After tumor implantation, mice were treated with 5AHQ (50 mg/kg/day) or buffer control by oral gavage. Oral 5AHQ decreased tumor weight and volume in all 3 mouse models compared to control without causing weight loss or gross organ toxicity. In summary, we have identified a new strategy for inhibition of the proteasome and a lead for a new therapeutic agent for the treatment of hematologic malignancies.


2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 820-820
Author(s):  
Yvonne A.R. White ◽  
Alan L. Johnson ◽  
Dori C. Woods

2003 ◽  
Vol 17 (4) ◽  
pp. 103-107 ◽  
Author(s):  
Chia-Ni Li ◽  
Hui-Lun Hsu ◽  
Tsu-Lan Wu ◽  
Kuo-Chien Tsao ◽  
Chien-Feng Sun ◽  
...  

2018 ◽  
Vol 120 (6) ◽  
pp. 9608-9623 ◽  
Author(s):  
Wagner D. Vital ◽  
Heron F. V. Torquato ◽  
Larissa de Oliveira Passos Jesus ◽  
Wagner Alves de Souza Judice ◽  
Maria Fátima das G. F. da Silva ◽  
...  

2007 ◽  
Vol 81 (6) ◽  
pp. 2817-2830 ◽  
Author(s):  
Zsolt Fábián ◽  
Christine M. Csatary ◽  
József Szeberényi ◽  
Laszlo K. Csatary

ABSTRACT While Newcastle disease virus (NDV) causes serious infections in birds, it is apparently nonpathogenic in mammalian species, including humans. Previous observations and small-scale clinical trials indicated that NDV exerts oncolytic effects. Isolates of NDV were found to have selective affinity to transformed cells. We previously showed that the attenuated NDV strain MTH-68/H causes apoptotic cell death in cultures of PC12 rat pheochromocytoma cells. The aim of the present study was to extend MTH-68/H cytotoxicity testing with human tumor cell lines and to analyze certain biochemical aspects of its oncolytic effect. MTH-68/H was found to be able to kill a wide range of transformed cells by apoptosis. While caspase-8 and caspase-9 are not involved in MTH-68/H-induced apoptosis, activation of caspase-3 and caspase-12 was detected in virus-infected PC12 cells. A human glioblastoma cell line with repressible expression of the p53 protein did not show any difference in MTH-68/H sensitivity in its p53-expressing and p53-depleted states, indicating that the apoptotic process induced by MTH-68/H does not depend on p53. Apoptosis was accompanied by virus replication in two tumor cell lines tested (PC12 cells and HeLa human cervical cells), and signs of endoplasmic reticulum stress (phosphorylation of protein kinase R-like endoplasmic reticulum kinase and eIF2α) were also detected in transformed cells. In contrast, proliferation of nontransformed mouse and rat fibroblast cell lines and human primary fibroblasts was not affected by MTH-68/H treatment. MTH-68/H thus selectively kills tumor cell cultures by inducing endoplasmic reticulum stress leading to p53-independent apoptotic cell death.


Sign in / Sign up

Export Citation Format

Share Document