Abstract 2857: Monoclonal antibodies against novel tumor markers for cancer diagnosis and treatment .

Author(s):  
Renata Maria Grifantini ◽  
Piero Pileri ◽  
Matteo Parri ◽  
Alberto Grandi ◽  
Susanna Campagnoli ◽  
...  
2020 ◽  
Vol 21 (11) ◽  
pp. 1097-1102
Author(s):  
Drashti Desai ◽  
Pravin Shende

: Immunotherapy emerges as a treatment strategy for breast cancer marker, diagnosis and treatment. In this review, monoclonal antibodies (mAbs)-based passive and peptide vaccines as active immunotherapy approaches like activation of B-cells and T-cells are studied. Passive immunotherapy is mAbs-based therapy effective against tumor cells, which acts by targeting HER2, IGF 1R, VEGF, BCSC and immune checkpoints. Neuropeptide Y (NPY) and GPCR are the areas of interest to target BC metastases for on-targeting therapeutic action. Neuropeptide S (NPS) or NPS receptor 1, acts as a biomarker for Neuroendocrine tumors (NET), mostly characterized by synaptophysin and chromogranin-A expression or Ki-67 proliferation index. The protein fusion technologies arise as a promising avenue in plant expression systems for increased recombinant Ab accumulation and cost-efficient purification. Recently, mAbs-based immunotherapy effectiveness is appreciated as a novel therapeutic combination of chemotherapy and immunotherapy to reduce the side effects and improve therapeutic responsiveness. Synthetic drug resistance will be overcome by mAbs-based therapy through several clinical trials and detection methods need to be optimized for accuracy and precision. Pharmacokinetic attributes need to be accessed for preferred receptor-agonist activity without ligand accumulation.


2020 ◽  
Vol 20 (11) ◽  
pp. 1276-1287 ◽  
Author(s):  
Tran Q. Huy ◽  
Pham T.M. Huyen ◽  
Anh-Tuan Le ◽  
Matteo Tonezzer

Background: Silver nanoparticles (AgNPs) are well-known as a promising antimicrobial material; they have been widely used in many commercial products against pathogenic agents. Despite a growing concern regarding the cytotoxicity, AgNPs still have attracted considerable interest worldwide to develop a new generation of diagnostic tool and effective treatment solution for cancer cells. Objective: This paper aims to review the advances of AgNPs applied for cancer diagnosis and treatment. Methods: The database has been collected, screened and analysed through up-to-date scientific articles published from 2007 to May 2019 in peer-reviewed international journals. Results: The findings of the database have been analysed and divided into three parts of the text that deal with AgNPs in cancer diagnosis, their cytotoxicity, and the role as carrier systems for cancer treatment. Thanks to their optical properties, high conductivity and small size, AgNPs have been demonstrated to play an essential role in enhancing signals and sensitivity in various biosensing platforms. Furthermore, AgNPs also can be used directly or developed as a drug delivery system for cancer treatment. Conclusion: The review paper will help readers understand more clearly and systematically the role and advances of AgNPs in cancer diagnosis and treatment.


2020 ◽  
Vol 138 ◽  
pp. 57-67 ◽  
Author(s):  
Tineke Vandenbroucke ◽  
Magali Verheecke ◽  
Mathilde van Gerwen ◽  
Kristel Van Calsteren ◽  
Michael J. Halaska ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 159
Author(s):  
Yao Peng ◽  
Yuqiang Nie ◽  
Jun Yu ◽  
Chi Chun Wong

Colorectal cancer (CRC) is one of the leading cancers that cause cancer-related deaths worldwide. The gut microbiota has been proved to show relevance with colorectal tumorigenesis through microbial metabolites. By decomposing various dietary residues in the intestinal tract, gut microbiota harvest energy and produce a variety of metabolites to affect the host physiology. However, some of these metabolites are oncogenic factors for CRC. With the advent of metabolomics technology, studies profiling microbiota-derived metabolites have greatly accelerated the progress in our understanding of the host-microbiota metabolism interactions in CRC. In this review, we briefly summarize the present metabolomics techniques in microbial metabolites researches and the mechanisms of microbial metabolites in CRC pathogenesis, furthermore, we discuss the potential clinical applications of microbial metabolites in cancer diagnosis and treatment.


Cell ◽  
2021 ◽  
Vol 184 (7) ◽  
pp. 1661-1670
Author(s):  
Henry Rodriguez ◽  
Jean Claude Zenklusen ◽  
Louis M. Staudt ◽  
James H. Doroshow ◽  
Douglas R. Lowy

Sign in / Sign up

Export Citation Format

Share Document