antimicrobial material
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 26)

H-INDEX

12
(FIVE YEARS 3)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 106
Author(s):  
Hoang Thi Phuong ◽  
Nguyen Kim Thoa ◽  
Phung Thi Anh Tuyet ◽  
Quyen Nguyen Van ◽  
Yen Dao Hai

Cellulose nanomaterials (CNs) are renewable, bio-derived materials that can address not only technological challenges but also social impacts. This ability results from their unique properties, for example, high mechanical strength, high degree of crystallinity, biodegradable, tunable shape, size, and functional surface chemistry. This minireview provides chemical and physical features of cellulose nanomaterials and recent developments as an adsorbent and an antimicrobial material generated from bio-renewable sources.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012012
Author(s):  
Y X Koh ◽  
H L Choo ◽  
Y H Wong ◽  
C H Yeong

Abstract A recent study showed that at least 50% of nosocomial infections are due to medical indwelling devices like surgical guides and prosthetics. This amounts to about 2 million patients affected a year. The reason for such statistics is the growth of microorganisms on the surfaces of the medical devices. There have been many attempts to create antimicrobial materials but most materials are unable to hold more than one antimicrobial agent without a secondary process. The study related to antimicrobial material with more than one type of agent is rarely found in literature. Hence, the objective of this project is to produce an antimicrobial material that can hold more than one antimicrobial agent without the need for a secondary process. The material is produced by sulfonating high impact polystyrene (HIPS) and attaching copper and silver ions. The optimum time of sulfonation of the HIPS was determined by the degree of sulfonation and ion exchange capacity. Then, the sulfonated HIPS were loaded with both copper and silver ions at different ratios. The 6-hour sample yielded the highest degree of sulfonation and ionic exchange capacity of 33.7% and 2.57 meq/g, respectively. In future work, the characterization of the 6-hour sulfonated HIPS sample loaded with copper and silver ions at different concentration ratios will be performed using TGA, DSC and FTIR spectroscopy. Lastly, the efficacy of the antimicrobial properties of the sulfonated HIPS will be tested using different bacterial strains.


2021 ◽  
Author(s):  
Alexander Caschera ◽  
JULIE MCAULEY ◽  
Youry Kim ◽  
DAMIAN PURCELL ◽  
Jasper Rymenants ◽  
...  

A commercially available and EPA/PMRA registered quaternary ammonium antimicrobial formulation was applied to stainless steel carrier disks and sent to two virology research institutes to independently determine whether samples treated with SiQAC-C18 antimicrobial material could deactivate deposited SARS-CoV-2 virions on contaminated surfaces. The results independently support a sustained antiviral effect imparted from these treated surfaces by both SARS-CoV-2 virion destruction and degradation of viral RNA. These preliminary results indicate the SiQAC-18 treated surfaces could play an important role in mitigating the communicability and fomite transmission of SARS-CoV-2.


2021 ◽  
Author(s):  
Alexander Caschera ◽  
JULIE MCAULEY ◽  
Youry Kim ◽  
DAMIAN PURCELL ◽  
Jasper Rymenants ◽  
...  

A commercially available and EPA/PMRA registered quaternary ammonium antimicrobial formulation was applied to stainless steel carrier disks and sent to two virology research institutes to independently determine whether samples treated with SiQAC-C18 antimicrobial material could deactivate deposited SARS-CoV-2 virions on contaminated surfaces. The results independently support a sustained antiviral effect imparted from these treated surfaces by both SARS-CoV-2 virion destruction and degradation of viral RNA. These preliminary results indicate the SiQAC-18 treated surfaces could play an important role in mitigating the communicability and fomite transmission of SARS-CoV-2.


2021 ◽  
Vol 368 (7) ◽  
Author(s):  
Alibe Wasa ◽  
Johann G Land ◽  
Rukmini Gorthy ◽  
Susan Krumdieck ◽  
Catherine Bishop ◽  
...  

ABSTRACT Antimicrobial materials are tools used to reduce the transmission of infectious microorganisms. Photo-illuminated titania (TiO2) is a known antimicrobial material. Used as a coating on door handles and similar surfaces, it may reduce viability and colonization by pathogens and limit their spread. We tested the survival of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Saccharomyces cerevisiae on a nano-structured TiO2-based thin film, called ‘NsARC’, and on stainless steel under a variety of light wavelengths and intensities. There was significantly less survival (P <0.001) of all the organisms tested on NsARC compared to inert uncoated stainless steel under all conditions. NsARC was active in the dark and possible mechanisms for this are suggested. NsARC inhibited biofilm formation as confirmed by scanning electron microscopy. These results suggest that NsARC can be used as a self-cleaning and self-sterilizing antimicrobial surface coating for the prevention and reduction in the spread of potentially infectious microbes.


2021 ◽  
Vol 3 ◽  
Author(s):  
Declan C. Mullen ◽  
Xing Wan ◽  
Timo M. Takala ◽  
Per E. Saris ◽  
V. M. Moreira

The overall expectation from an antimicrobial surface has been high considering the need for efficiency in preventing the attachment and growth of pathogenic microbes, durability, safety to both humans and environment as well as cost-effectiveness. To date, antimicrobial surface design has been mostly conducted liberally, without rigorous consideration of establishing robust structure-activity relationships for each design strategy or of the use intended for a specific antimicrobial material. However, the variability among the domain bacteria, which is the most diverse of all, alongside the highly dynamic nature of the bacteria-surface interface have taught us that the likelihood of finding universal antimicrobial surfaces is low. In this perspective we discuss some of the current hurdles faced by research in this promising field, emphasizing the relevance and complexity of probing the bacteria-surface interface, and explain why we feel it would greatly benefit from a more streamlined ad-hoc approach.


2021 ◽  
Author(s):  
Davide Califano ◽  
Bethany Lee Patenall ◽  
Marco A.S. Kadowaki ◽  
Davide Mattia ◽  
Janet L. Scott ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 68-78
Author(s):  
Senthilkumar Palanisamy ◽  
Kalaivani Subramanian ◽  
Lerince Godrina Bennet ◽  
Janani Ambrose ◽  
Aganiya Gopalakrishnan ◽  
...  

Abstract The pregnant cow urine (PCU) is an active source of antimicrobial agents that is used for fabricating chitosan coated Ag/AgCl nanoparticles (NPs) in the present study. These PCU@C-Ag/AgCl NPs were physicochemically characterized and evaluated for antimicrobial activity against selected respiratory tract infection (RTI) pathogens. The absorption band around 420 nm in UV-Visible spectrum indicated the presence of Ag NPs. The spherical shape of NPs was observed using TEM. Also, the crystalline structure was confirmed using the XRD pattern. The PCU@C-Ag/AgCl NPs showed strong antimicrobial activity against all tested RTI pathogens. In addition, FESEM analysis showed morphological changes in RTI bacterial pathogens. Thereby, PCU@C-Ag/AgCl NPs may be used as an antimicrobial material to treat RTIs in near future at clinical level.


Sign in / Sign up

Export Citation Format

Share Document