Abstract LB-186: Development and validation of a novel RNA in situ hybridization assay to detect RNA polymerase I activity in vivo

Author(s):  
Gunes Guner ◽  
Paul Sirajuddin ◽  
Qizhi Zheng ◽  
Hester Liu ◽  
Ibrahim Kulac ◽  
...  
1984 ◽  
Vol 4 (2) ◽  
pp. 221-227 ◽  
Author(s):  
R Miesfeld ◽  
N Arnheim

RNA polymerase I transcription factors were purified from HeLa and mouse L cell extracts by phosphocellulose chromatography. Three fractions from each species were found to be required for transcription. One of these fractions, virtually devoid of RNA polymerase I activity, was found to form a stable preinitiation complex with small DNA fragments containing promoter sequences from the homologous but not the heterologous species. These species-specific DNA-binding factors can explain nucleolar dominance in vivo in mouse-human hybrid somatic cells and species specificity in cell-free, RNA polymerase I-dependent transcription systems. The evolution of species-specific transcriptional control signals may be the natural outcome of a special relationship that exists between the RNA polymerase I transcription machinery and the multigene family coding for rRNA.


1995 ◽  
Vol 15 (8) ◽  
pp. 4648-4656 ◽  
Author(s):  
M H Paalman ◽  
S L Henderson ◽  
B Sollner-Webb

We show that the mouse ribosomal DNA (rDNA) spacer promoter acts in vivo to stimulate transcription from a downstream rRNA gene promoter. This augmentation of mammalian RNA polymerase I transcription is observed in transient-transfection experiments with three different rodent cell lines, under noncompetitive as well as competitive transcription conditions, over a wide range of template concentrations, whether or not the enhancer repeats alone stimulate or repress expression from the downstream gene promoter. Stimulation of gene promoter transcription by the spacer promoter requires the rDNA enhancer sequences to be present between the spacer promoter and gene promoter and to be oriented as in native rDNA. Stimulation also requires that the spacer promoter be oriented toward the enhancer and gene promoter. However, stimulation does not correlate with transcription from the spacer promoter because the level of stimulation is not altered by either insertion of a functional mouse RNA polymerase I transcriptional terminator between the spacer promoter and enhancer or replacement with a much more active heterologous polymerase I promoter. Further analysis with a series of mutated spacer promoters indicates that the stimulatory activity does not reside in the major promoter domains but requires the central region of the promoter that has been correlated with enhancer responsiveness in vivo.


2017 ◽  
Vol 15 (5) ◽  
pp. 577-584 ◽  
Author(s):  
Gunes Guner ◽  
Paul Sirajuddin ◽  
Qizhi Zheng ◽  
Baoyan Bai ◽  
Alexandra Brodie ◽  
...  

2017 ◽  
Vol 23 (18) ◽  
pp. 5622-5630 ◽  
Author(s):  
Lisha Wang ◽  
Paul W. Harms ◽  
Nallasivam Palanisamy ◽  
Shannon Carskadon ◽  
Xuhong Cao ◽  
...  

2006 ◽  
Vol 27 (3) ◽  
pp. 937-948 ◽  
Author(s):  
Brenden Rickards ◽  
S. J. Flint ◽  
Michael D. Cole ◽  
Gary LeRoy

ABSTRACT Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin.


1996 ◽  
Vol 133 (2) ◽  
pp. 225-234 ◽  
Author(s):  
P Jordan ◽  
M Mannervik ◽  
L Tora ◽  
M Carmo-Fonseca

Here we show that the TATA-binding protein (TBP) is localized in the nucleoplasm and in the nucleolus of mammalian cells, consistent with its known involvement in transcription by RNA polymerase I, II, and III. In the nucleolus of actively growing cells, TBP colocalizes with upstream binding factor (UBF) and RNA polymerase I at the sites of rRNA transcription. During mitosis, when rRNA synthesis is down-regulated, TBP colocalizes with TBP-associated factors for RNA polymerase I (TAF(I)s), UBF, and RNA polymerase I on the chromosomal regions containing the rRNA genes. Treatment of cells with a low concentration of actinomycin D inhibits rRNA synthesis and causes a redistribution of the rRNA genes that become concentrated in clusters at the periphery of the nucleolus. A similar redistribution was observed for the major components of the rRNA transcription machinery (i.e., TBP, TAF(I)s, UBF, and RNA polymerase I), which still colocalized with each other. Furthermore, anti-TBP antibodies are shown to coimmunoprecipitate TBP and TAF(I)63 in extracts prepared from untreated and actinomycin D-treated cells. Collectively, the data indicate that in vivo TBP/promoter selectivity factor, UBF, and RNA polymerase I remain associated with both active and inactive rRNA genes.


1976 ◽  
Vol 156 (2) ◽  
pp. 391-398 ◽  
Author(s):  
T C Spelsberg

1. Varied doses of labelled or unlabelled progesterone were injected into immature chicks which had previously been stimulated with oestrogen. The concentrations of nuclear bound [3H]progesterone were correlated with the effects of the hormone on endogenous RNA polymerase I and II activities in isolated oviduct nuclei. 2. The extent of nuclear localization of [3H]progesterone in oviduct (a progesterone target tissue) was shown to be much greater than in lung (non-target tissue). The conccentration of bivalent cations in solvents used in the nuclei isolations has a marked effect on the amount of bound hormone in the nuclei. 3. Evidence for the existence of several classes of binding sites for progesterone in the oviduct nuclei is given. These classes represent about 1000) 10000 and 100000 molecules of the hormone per cell nucleus and are saturated by injecting approx. 10, 100 and 1000 mug of progesterone respectively. 4. When saturation of the first (highest affinity) class of nuclear sites occurs, a marked inhibition in RNA polymerase II (but not RNA polymerase I) activity was observed. When the second class of sites was saturated, alterations in both RNA polymerase I and II activities were observed. Binding to the third class of nuclear binding sites was not accompained by further changes in polymerase activity. It is suggested that the first two classes of nuclear binding sites may represent functional sites for progesterone action in the chick oviduct.


Sign in / Sign up

Export Citation Format

Share Document