Abstract PO-056: Insulin receptor signaling in pancreatic acinar cells contributes to pancreatic cancer development

Author(s):  
Anni M. Y. Zhang ◽  
Jenny C. C. Yang ◽  
Twan J. J. de Winter ◽  
David F. Schaeffer ◽  
Janel L. Kopp ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Evangelina López de Maturana ◽  
◽  
Juan Antonio Rodríguez ◽  
Lola Alonso ◽  
Oscar Lao ◽  
...  

Abstract Background Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance. Methods We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D) permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map (3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public genomic information allowed prioritization of potentially relevant candidate variants. Results We identified several new variants located in genes for which there is experimental evidence of their implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in NR5A2 (rs3790840) with a meta-analysis p value = 5.91E−06 in 1D approach and a Local Moran’s Index (LMI) = 7.76 in 2D approach. We also identified a multi-hit region in CASC8—a lncRNA associated with pancreatic carcinogenesis—with a lowest p value = 6.91E−05. Importantly, two new PC loci were identified both by 2D and 3D approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1—a major regulator of the ER stress and unfolded protein responses in acinar cells—identified by 3D; all of them with a strong in silico functional support. Conclusions This multi-step strategy, combined with an in-depth in silico functional analysis, offers a comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases.


Diabetes ◽  
2006 ◽  
Vol 55 (6) ◽  
pp. 1581-1591 ◽  
Author(s):  
S. C. Martinez ◽  
C. Cras-Meneur ◽  
E. Bernal-Mizrachi ◽  
M. A. Permutt

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2606
Author(s):  
Carlotta Paoli ◽  
Alessandro Carrer

The carcinogenesis of pancreatic ductal adenocarcinoma (PDA) progresses according to multi-step evolution, whereby the disease acquires increasingly aggressive pathological features. On the other hand, disease inception is poorly investigated. Decoding the cascade of events that leads to oncogenic transformation is crucial to design strategies for early diagnosis as well as to tackle tumor onset. Lineage-tracing experiments demonstrated that pancreatic cancerous lesions originate from acinar cells, a highly specialized cell type in the pancreatic epithelium. Primary acinar cells can survive in vitro as organoid-like 3D spheroids, which can transdifferentiate into cells with a clear ductal morphology in response to different cell- and non-cell-autonomous stimuli. This event, termed acinar-to-ductal metaplasia, recapitulates the histological and molecular features of disease initiation. Here, we will discuss the isolation and culture of primary pancreatic acinar cells, providing a historical and technical perspective. The impact of pancreatic cancer research will also be debated. In particular, we will dissect the roles of transcriptional, epigenetic, and metabolic reprogramming for tumor initiation and we will show how that can be modeled using ex vivo acinar cell cultures. Finally, mechanisms of PDA initiation described using organotypical cultures will be reviewed.


Aging Cell ◽  
2020 ◽  
Vol 19 (10) ◽  
Author(s):  
Hilaree N. Frazier ◽  
Katie L. Anderson ◽  
Adam O. Ghoweri ◽  
Ruei-Lung Lin ◽  
Tara R. Hawkinson ◽  
...  

2019 ◽  
Vol 316 (4) ◽  
pp. E660-E673 ◽  
Author(s):  
Katrine D. Galsgaard ◽  
Marie Winther-Sørensen ◽  
Jens Pedersen ◽  
Sasha A. S. Kjeldsen ◽  
Mette M. Rosenkilde ◽  
...  

Glucagon and insulin are important regulators of blood glucose. The importance of insulin receptor signaling for alpha-cell secretion and of glucagon receptor signaling for beta-cell secretion is widely discussed and of clinical interest. Amino acids are powerful secretagogues for both hormones, and glucagon controls amino acid metabolism through ureagenesis. The role of insulin in amino acid metabolism is less clear. Female C57BL/6JRj mice received an insulin receptor antagonist (IRA) (S961; 30 nmol/kg), a glucagon receptor antagonist (GRA) (25-2648; 100 mg/kg), or both GRA and IRA (GRA + IRA) 3 h before intravenous administration of similar volumes of saline, glucose (0.5 g/kg), or amino acids (1 µmol/g) while anesthetized with isoflurane. IRA caused basal hyperglycemia, hyperinsulinemia, and hyperglucagonemia. Unexpectedly, IRA lowered basal plasma concentrations of amino acids, whereas GRA increased amino acids, lowered glycemia, and increased glucagon but did not influence insulin concentrations. After administration of GRA + IRA, insulin secretion was significantly reduced compared with IRA administration alone. Blood glucose responses to a glucose and amino acid challenge were similar after vehicle and GRA + IRA administration but greater after IRA and lower after GRA. Anesthesia may have influenced the results, which otherwise strongly suggest that both hormones are essential for the maintenance of glucose homeostasis and that the secretion of both is regulated by powerful negative feedback mechanisms. In addition, insulin limits glucagon secretion, while endogenous glucagon stimulates insulin secretion, revealed during lack of insulin autocrine feedback. Finally, glucagon receptor signaling seems to be of greater importance for amino acid metabolism than insulin receptor signaling.


Sign in / Sign up

Export Citation Format

Share Document