Abstract P6-12-14: Comparative analysis of breast cancer phenotypes in African American, White American, and African patients- Correlation between African ancestry and triple negative breast cancer

Author(s):  
LA Newman ◽  
E Jiagge ◽  
JM Bensenhaver ◽  
D Chitale ◽  
C Kleer ◽  
...  
2021 ◽  
Vol 14 (7) ◽  
pp. 101086
Author(s):  
Mansoor Saleh ◽  
Darshan Shimoga Chandrashekar ◽  
Sayed Shahin ◽  
Sumit Agarwal ◽  
Hyung-Gyoon Kim ◽  
...  

2020 ◽  
Author(s):  
Ana T. Matias ◽  
Ana Jacinta-Fernandes ◽  
Ana-Teresa Maia ◽  
Sofia Braga ◽  
António Jacinto ◽  
...  

AbstractPurposeTriple-negative breast cancer (TNBC) has a higher incidence, a younger age of onset, and a more aggressive behavior in African-ancestry women. Biological disparities have been suggested as an important factor influencing the ancestry-associated TNBC discrepancy. In this study, we sought to identify ancestry-associated differential gene and protein expression between African-ancestry and White TNBC patients, controlling for patients’ menopause status and pathological staging at diagnosis.MethodsDifferential gene expression analyses (DGEA) were performed using RNA-sequencing data from The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) and Ingenuity Pathway Analysis (IPA), with focus on network design, were performed to highlight candidate genes for further validation through immunohistochemistry of TNBC samples from patients followed in Portugal.ResultsWith 52 African-American and 90 White TNBC patients included, TCGA’s data corroborate that African-American patients have a higher TNBC incidence (28.42% vs 11.89%, p<0.0001). Particularly, premenopausal and stage II disease African-American patients also have significantly lower survival probability, comparing with White patients (log-rank p=0.019 and 0.0038, respectively). DGEA results suggest that expression profile differences are more associated with TNBC staging than with patient’s menopause status. Hippo pathway and cellular community gene sets are downregulated, while breast cancer gene set is upregulated in African-Americans, comparing with White TNBC patients. Furthermore, MAPK pathway gene set is upregulated when controlling for stage II disease. Due to their central role in highly scored networks resulted from IPA’s network design, EGFR, Myc and Bcl2 genes were selected for further validation through immunohistochemistry. We also included β-Catenin in the validation study as it is consensually reported to be required in TNBC tumorigenesis. Although patients used in the DGEA and in the immunohistochemistry experiments are geographically and culturally distinct, both groups of African-ancestry patients are mostly of western-African ancestry and, interesting, differential gene and protein expression matched.ConclusionsWe found ancestry-associated gene expression patterns between African-ancestry and White TNBCs, particularly when controlling for menopause status or staging. EGFR, Myc, Bcl2 and β-catenin gene and protein differential expression matching results in distinct populations suggest these markers as being important indicators of TNBC’s ancestry-associated development.


2014 ◽  
Vol 15 (13) ◽  
pp. e625-e634 ◽  
Author(s):  
Abenaa M Brewster ◽  
Mariana Chavez-MacGregor ◽  
Powel Brown

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 248 ◽  
Author(s):  
Aurore Claude-Taupin ◽  
Leïla Fonderflick ◽  
Thierry Gauthier ◽  
Laura Mansi ◽  
Jean-René Pallandre ◽  
...  

Early detection and targeted treatments have led to a significant decrease in mortality linked to breast cancer (BC), however, important issues need to be addressed in the future. One of them will be to find new triple negative breast cancer (TNBC) therapeutic strategies, since none are currently efficiently targeting this subtype of BC. Since numerous studies have reported the possibility of targeting the autophagy pathway to treat or limit cancer progression, we analyzed the expression of six autophagy genes (ATG9A, ATG9B, BECLIN1, LC3B, NIX and P62/SQSTM1) in breast cancer tissue, and compared their expression with healthy adjacent tissue. In our study, we observed an increase in ATG9A mRNA expression in TNBC samples from our breast cancer cohort. We also showed that this increase of the transcript was confirmed at the protein level on paraffin-embedded tissues. To corroborate these in vivo data, we designed shRNA- and CRISPR/Cas9-driven inhibition of ATG9A expression in the triple negative breast cancer cell line MDA-MB-436, in order to determine its role in the regulation of cancer phenotypes. We found that ATG9A inhibition led to an inhibition of in vitro cancer features, suggesting that ATG9A can be considered as a new marker of TNBC and might be considered in the future as a target to develop new specific TNBC therapies.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Carlos Perez Kerkvliet ◽  
Amy Dwyer ◽  
Tarah Regan Anderson ◽  
Marissa Oram ◽  
Branden Smeester ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document