Abstract 2350: Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes

Author(s):  
Chunwan Lu ◽  
John D. Klement ◽  
Mohammed L. Ibrahim ◽  
Priscilla S. Redd ◽  
Gang Zhou ◽  
...  
Author(s):  
Chunwan Lu ◽  
John D. Klement ◽  
Mohammed L. Ibrahim ◽  
Wei Xiao ◽  
Priscilla S. Redd ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dragana Miloradovic ◽  
Dragica Miloradovic ◽  
Bojana Simovic Markovic ◽  
Aleksandar Acovic ◽  
Carl Randall Harrell ◽  
...  

There is still a lively debate about whether mesenchymal stem cells (MSCs) promote or suppress antitumor immune response. Although several possible explanations have been proposed, including different numbers of injected and engrafted MSCs, heterogeneity in phenotype, and function of tumor cells, the exact molecular mechanisms responsible for opposite effects of MSCs in modulation of antitumor immunity are still unknown. Herewith, we used a B16F10 murine melanoma model to investigate whether timing of MSC administration in tumor-bearing mice was crucially important for their effects on antitumor immunity. MSCs, intravenously injected 24 h after melanoma induction (B16F10+MSC1d-treated mice), significantly enhanced natural killer (NK) and T cell-driven antitumor immunity, suppressed tumor growth, and improved survival of melanoma-bearing animals. Significantly higher plasma levels of antitumorigenic cytokines (TNF-α and IFN-γ), remarkably lower plasma levels of immunosuppressive cytokines (TGF-β and IL-10), and a significantly higher number of tumor-infiltrating, IFN-γ-producing, FasL- and granzyme B-expressing NK cells, IL-17-producing CD4+Th17 cells, IFN-γ- and TNF-α-producing CD4+Th1 cells, and CD8+cytotoxic T lymphocytes (CTLs) were observed in B16F10+MSC1d-treated mice. On the contrary, MSCs, injected 14 days after melanoma induction (B16F10+MSC14d-treated mice), promoted tumor growth by suppressing antigen-presenting properties of tumor-infiltrating dendritic cells (DCs) and macrophages and by reducing tumoricidal capacity of NK cells and T lymphocytes. Significantly higher plasma levels of TGF-β and IL-10, remarkably lower plasma levels of TNF-α and IFN-γ, and significantly reduced number of tumor-infiltrating, I-A-expressing, and IL-12-producing macrophages, CD80- and I-A-expressing DCs, granzyme B-expressing CTLs and NK cells, IFN-γ- and IL-17-producing CTLs, CD4+Th1, and Th17 cells were observed in B16F10+MSC14d-treated animals. In summing up, the timing of MSC administration into the tumor microenvironment was crucially important for MSC-dependent modulation of antimelanoma immunity. MSCs transplanted during the initial phase of melanoma growth exerted tumor-suppressive effect, while MSCs injected during the progressive stage of melanoma development suppressed antitumor immunity and enhanced tumor expansion.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3845-3853 ◽  
Author(s):  
Kirstin Veugelers ◽  
Bruce Motyka ◽  
Christine Frantz ◽  
Irene Shostak ◽  
Tracy Sawchuk ◽  
...  

Abstract Cytotoxic T lymphocytes and natural killer cells destroy target cells via the directed exocytosis of lytic effector molecules such as perforin and granzymes. The mechanism by which these proteins enter targets is uncertain. There is ongoing debate over whether the most important endocytic mechanism is nonspecific or is dependent on the cation-independent mannose 6-phosphate receptor. This study tested whether granzyme B endocytosis is facilitated by dynamin, a key factor in many endocytic pathways. Uptake of and killing by the purified granzyme B molecule occurred by both dynamin-dependent and -independent mechanisms. However most importantly, serglycin-bound granzyme B in high-molecular-weight degranulate material from cytotoxic T lymphocytes predominantly followed a dynamin-dependent pathway to kill target cells. Similarly, killing by live cytotoxic T lymphocytes was attenuated by a defect in the dynamin endocytic pathway, and in particular, the pathways characteristically activated by granzyme B were affected. We therefore propose a model where degranulated serglycin-bound granzymes require dynamin for uptake.


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1419-1426 ◽  
Author(s):  
Xinguo Jiang ◽  
Brent A. Orr ◽  
David M. Kranz ◽  
David J. Shapiro

Exposure to estrogens is associated with an increased risk of developing breast, cervical, and liver cancer. Estrogens strongly induce the human granzyme B inhibitor, proteinase inhibitor 9 (PI-9). Because cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells use the granzyme pathway to induce apoptosis of target cells, we tested the ability of activated CTLs and the human NK cell line, YT cells, to lyse human liver cells. Estrogen induction of PI-9 protected the liver cells against CTL and NK cell-mediated, granzyme-dependent, apoptosis. Knockdown of PI-9 by RNA interference blocked the protective effect of estrogen. This work demonstrates that estrogens can act on target cells to control their destruction by immune system cells and shows that induction of PI-9 expression can inhibit both CTL and NK cell-mediated apoptosis. Estrogen induction of PI-9 may reduce the ability of cytolytic lymphocytes-mediated immune surveillance to destroy newly transformed cells, possibly providing a novel mechanism for an estrogen-mediated increase in tumor incidence.


Author(s):  
Fransje Snijders ◽  
Peter C. Wever ◽  
Sven A. Danner ◽  
C. Erik Hack ◽  
Fiebo J. W. ten Kate ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Naoko Kumagai-Takei ◽  
Yasumitsu Nishimura ◽  
Hidenori Matsuzaki ◽  
Suni Lee ◽  
Kei Yoshitome ◽  
...  

We previously reported that exposure to chrysotile B (CB) asbestos suppressed the induction of mature cytotoxic T lymphocytes (CTLs) during mixed lymphocyte reaction assays (MLRs) with a decrease in the proliferation of immature CTLs. However, the mechanism responsible for the effect of asbestos fibers on the differentiation of CTLs remains unclear. Since interleukin-2 (IL-2) is a regulator of T lymphocyte proliferation, we examined the effect of IL-2 addition on suppressed CTL differentiation in CB-exposed cultures using flow cytometry (FCM). When IL-2 was added at 1 ng/mL on the second day of MLRs, the asbestos-caused decreases in the proliferation and percentages of CD25+and CD45RO+cells in CD8+lymphocytes were not recovered by IL-2 addition, although the decrease in percentage of granzyme B+cells was partially recovered. CD8+lymphocytes from the IL-2-treated culture with asbestos showed the same degree of cytotoxicity as those in cultures without IL-2 or asbestos. These findings indicate that IL-2 insufficiency is not the main cause for the suppressed induction of CTLs by asbestos exposure, although they suggest a potential for the improvement of such suppressed CTL functions. Secretory factors other than IL-2 in addition to membrane-bound stimulatory molecules may play a role in asbestos-caused suppressed CTL differentiation.


Sign in / Sign up

Export Citation Format

Share Document