Abstract PR03: Genome-wide 5-hydroxymethylcytosine profiles in circulating cell-free DNA and survival in patients with multiple myeloma

Author(s):  
Brian C.-H. Chiu ◽  
Zhou Zhang ◽  
Jason Karpus ◽  
Benjamin Derman ◽  
Chang Zeng ◽  
...  
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8032-8032
Author(s):  
Brian C Chiu ◽  
Zhou Zhang ◽  
Benjamin Avi Derman ◽  
Jason Karpus ◽  
Spencer Langerman ◽  
...  

8032 Background: The epigenetic mark 5-methylcytosines (5mC) have been associated with poor prognosis and survival in multiple myeloma (MM), but the prognostic role of 5-hydroxymethylcytosines (5hmC) as marks of tissue-specific enhancers generated from 5mC through active demethylation is unknown. We showed that 5hmC can be profiled in circulating cell-free DNA (cfDNA) and is associated with relapse/death in another lymphoproliferative disorder diffuse large B-cell lymphoma. To date, no study has investigated genome-wide 5hmC profiles in cfDNA for its prognostic significance in MM. Methods: A total of 354 newly diagnosed MM patients at the University of Chicago Medical Center were prospectively enrolled between 2010-2017. Blood samples were collected at the time of diagnosis. Patients were followed through 31 December 2020 (avg. follow-up = 77.8 mths). We collected baseline clinical, laboratory, and cytogenetic data from electronic medical records. Vital status was ascertained in 351 of the 354 patients (deaths = 73) using the National Death Index. We profiled genome-wide 5hmC in cfDNA using the 5hmC-Seal and next-generation sequencing. The 5hmC-Seal data were mapped to the human genome reference (hg19) and annotated to gene bodies. Overall survival (OS) was defined as time from diagnosis until death from any cause. We used Cox proportional hazards model and the elastic net regularization to identify genes with modified 5hmC levels that are associated with OS. Patients were randomly divided into a training set (n = 264) and testing set (n = 87). Results: The median age at diagnosis was 61.8 years and 47% (n = 165) were males. We used the differential 5hmC enrichment levels of a preliminary four-gene marker panel (i.e., YPEL1, VIPR2, PLAC8L1, and CYP2D6) to compute a weighted prognostic score (wp-score). In the training set (deaths = 55), MM patients with high wp-score had worse OS (Hazard Ratio [HR] = 2.2, 95% Confidence Interval [CI]: 1.3-3.9; p = 0.004). The same trend was observed in the testing set (deaths = 18) (HR = 3.5, 95% CI: 1.1-10.6; p = 0.02). The 5hmC-based wp-score remained significantly associated with OS after controlling for standard prognostic factors, suggesting that 5hmC-based wp-score for this 4-gene panel is an independent prognostic factor for MM. We also explored population-specific 5hmC and wp-score. We found that 5hmC profiles in cfDNA differ between Blacks (n = 117) and Whites (n = 234). In addition, 5hmC marker genes associated with OS differ between Blacks (13 genes) and Whites (20 genes). Conclusions: Our results suggest that 5hmC in cfDNA at the time of diagnosis correlate with OS in MM and the 5hmC marker genes associated with OS differ between Blacks and Whites. These findings suggest that a plasma-derived cfDNA 5hmC-modified gene panel holds promise as a noninvasive approach for predicting prognosis in MM and may be integrated in clinical practice to improve precision care.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian C.-H. Chiu ◽  
Chang Chen ◽  
Qiancheng You ◽  
Rudyard Chiu ◽  
Girish Venkataraman ◽  
...  

AbstractThe 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.


Author(s):  
Jiajun Cai ◽  
Chang Zeng ◽  
Wei Hua ◽  
Zengxin Qi ◽  
Yanqun Song ◽  
...  

Abstract Background Gliomas, especially the high-grade glioblastomas (GBM), are highly aggressive tumors in the central nervous system (CNS) with dismal clinical outcomes. Effective biomarkers, which are not currently available, may improve clinical outcomes through early detection. We sought to develop a non-invasive diagnostic approach for gliomas based on 5-hydroxymethylcytosines (5hmC) in circulating cell-free DNA (cfDNA). Methods We obtained genome-wide 5hmC profiles using the 5hmC-Seal technique in cfDNA samples from 111 prospectively enrolled patients with gliomas and 111 age-, gender-matched healthy individuals, which were split into a training set and a validation set. Integrated models comprised of 5hmC levels summarized for gene bodies, long non-coding RNAs (lncRNAs), cis-regulatory elements, and repetitive elements were developed using the elastic net regularization under a case-control design. Results The integrated 5hmC-based models differentiated healthy individuals from gliomas (AUC [area under the curve] = 84%; 95% confidence interval [CI], 74-93%), GBM patients (AUC = 84%; 95% CI, 74-94%), WHO II-III glioma patients (AUC = 86%; 95% CI, 76-96%), regardless of IDH1 (encoding isocitrate dehydrogenase) mutation status or other glioma-related pathological features such as TERT, TP53 in the validation set. Furthermore, the 5hmC biomarkers in cfDNA showed the potential as an independent indicator from IDH1 mutation status and worked in synergy with IDH1 mutation to distinguish GBM from WHO II-III gliomas. Exploration of the 5hmC biomarkers for gliomas revealed relevance to glioma biology. Conclusions The 5hmC-Seal in cfDNA offers the promise as a non-invasive approach for effective detection of gliomas in a screening program.


Theranostics ◽  
2019 ◽  
Vol 9 (24) ◽  
pp. 7239-7250 ◽  
Author(s):  
Ryan A. Hlady ◽  
Xia Zhao ◽  
Xiaoyu Pan ◽  
Ju Dong Yang ◽  
Fowsiyo Ahmed ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Lei Chen ◽  
Qianqian Shen ◽  
Shunliang Xu ◽  
Hongzhuan Yu ◽  
Shengjie Pei ◽  
...  

Background: 5-Hydroxymethylcytosine (5hmC) is an epigenetic DNA modification that is highly abundant in central nervous system. It has been reported that DNA 5hmC dysregulation play a critical role in Alzheimer’s disease (AD) pathology. Changes in 5hmC signatures can be detected in circulating cell-free DNA (cfDNA), which has shown potential as a non-invasive liquid biopsy material. Objective: However, the genome-wide profiling of 5hmC in cfDNA and its potential for the diagnosis of AD has not been reported to date. Methods: We carried out a case-control study and used a genome-wide chemical capture followed by high-throughput sequencing to detect the genome-wide profiles of 5hmC in human cfDNA and identified differentially hydroxymethylated regions (DhMRs) in late-onset AD patients and the control. Results: We discovered significant differences of 5hmC enrichment in gene bodies which were linked to multiple AD pathogenesis-associated signaling pathways in AD patients compared with cognitively normal controls, indicating they can be well distinguished from normal controls by DhMRs in cfDNA. Specially, we identified 7 distinct genes (RABEP1, CPNE4, DNAJC15, REEP3, ROR1, CAMK1D, and RBFOX1) with predicting diagnostic potential based on their significant correlations with MMSE and MoCA scores of subjects. Conclusion: The present results suggest that 5hmC markers derived from plasma cfDNA can served as an effective, minimally invasive biomarkers for clinical auxiliary diagnosis of late-onset AD.


Sign in / Sign up

Export Citation Format

Share Document