Targeted Sequencing of Circulating Cell-free DNA in Multiple Myeloma Allows Analysis of Somatic Mutations, Copy Number Aberrations, and Translocations

2017 ◽  
Vol 17 (1) ◽  
pp. e93-e94
Author(s):  
Olena Kis ◽  
Signy Chow ◽  
Rayan Kaedbey ◽  
Arnavaz Danesh ◽  
Mark Dowar ◽  
...  
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2836-2836
Author(s):  
Lieselot Buedts ◽  
Luc Mathieu Fornecker ◽  
Julio Finalet-Ferreiro ◽  
Luc Dehaspe ◽  
Thomas Tousseyn ◽  
...  

Abstract Introduction. For decades, the study of genomic alterations in Hodgkin lymphoma (HL) has been hampered by the low abundance of the malignant Hodgkin Reed-Sternberg (HRS) cells in HL lymph node biopsies. Laser microdissection or flow cytometric cell sorting allow the study of purified HRS cells, but the use of these applications is restricted to specialized research centers. We have recently demonstrated proof-of-principle that copy number aberrations (CNA) in HRS cells can be retrieved in circulating cell-free DNA (cfDNA) of HL patients (Vandenberghe et al., Lancet Haematol. 2015). Taking advantage of the presence of HRS cell-derived DNA (ctDNA) in plasma, the aim of this study was to catalogue CNA in HL in a large series of prospectively recruited HL patients. Methods. We analyzed plasma collected from 177 patients (median age 29, range 3-86) with newly diagnosed HL. 60 cases were diagnosed at our institution, including all disease subtypes and stages, with a majority of nodular sclerosis. 118 patients were recruited in the context of the BREACH study, a multicentric Phase 2B study for unfavorable early classical HL (NCT02292979). After cfDNA extraction, samples were low-pass sequenced (0.1x coverage) and analyzed using ichorCNA, an algorithm that produces read depth-based log2 CNA profiles and quantifies the cfDNA tumor content. Results. At diagnosis, 86 % (152/177) of patients showed obvious genomic imbalances in cfDNA, in early-stage (85 % (131/155)) as well as in advanced cases (95 % (21/22)). Among the abnormal profiles, gains encompassing 2p16, 5p15, 9p24, 12q13 and 19q13 were the most frequent aberrations, occurring in 79 %, 53 %, 57 %, 63 % and 80 % respectively. Losses most frequently affected regions 4q34, 6q23, 11q22 and 13q13, in 53 %, 63 %, 49 % and 59 % of abnormal profiles respectively (fig. 1A). All these CNAs have been previously described with varying frequencies in smaller series of 10-53 patients, using arrayCGH or whole exome sequencing on microdissected HRS cells or even HRS cell-derived cell lines as input material. The observed pattern of CNAs is distinct from the pattern we observed in cfDNA obtained from other hematological malignances, e.g. multiple myeloma and diffuse large B-cell lymphoma (fig. 1B, C). Analysis of follow-up cfDNA samples revealed that the majority of patients rapidly clear their profiles during the first two treatment cycles. Of 123 samples analysed at d15 of cycle 1, 89 samples (72 %) showed a normal profile without CNAs.This suggests a relationship between the fraction of ctDNA in cfDNA and the disease burden. However, we could not find a correlation between the ctDNA fraction as calculated by ichorCNA and the metabolic tumor volume as computed from PET/CT scans. This could be due to several factors, e.g. the small fraction of HRS cells in the metabolic tumor volume. We are currently investigating whether a correlation does exist between the HRS content in the lymph node biopsy and the ctDNA load. Conclusions. In this largest study of CNA in HL to date, we provide a comprehensive catalogue of the types of CNAs, as well as their frequencies and patterns in HL. In this series of 177 patients, gains affecting 2p, 12q and 19q and loss of 6q and 13q emerge as the most commonly recurrent CNAs in HL, across all HL subtypes and stages. The data confirm and extend our previous findings that the majority of HL patients, including those with early-stage disease, have detectable CNAs in their cfDNA at diagnosis. We demonstrate a broad spectrum of aberrations, gains and losses, some of which recur at higher frequencies than gains of 9p24, harboring PD-L1. This warrants further studies on how these CNAs are implicated in the pathogenesis of HL. It further endorses the use of ctDNA as an alternative gateway to the genome of HRS cells, and as a substrate for the evaluation of early disease response. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Tevfik Hatipoğlu ◽  
Esra Esmeray ◽  
Xiaozhou Hu ◽  
Hongling Yuan ◽  
Ayça Erşen Danyeli ◽  
...  

Background: Follicular lymphoma is the second most frequent non-Hodgkin lymphoma (NHL) accounting for 20-25% of NHL cases in western countries. Although it has an indolent character, progressive disease or relapse occurs within first two years following therapy initiation in ~20% of FL cases. Several somatic mutations were identified in genes of epigenetic regulation or other biological processes by sequencing of FL tumors. Current diagnostic and prognostic evaluations include invasive methodologies that may be less effective and more risky for the FL patients. Therefore, there is urgent need for development of non-invasive methods to improve diagnosis as well as risk stratification. Accumulating evidence has shown that circulating cell-free DNA (cfDNA) includes tumor-derived mutations in several cancer types; however, this possibility has not been comprehensively investigated in FL patients. Here we evaluated the potential diagnostic and prognostic value of cfDNA in FL cases by addressing the proportion by which cfDNA samples contains cancer-associated and prognosis-related mutations. Methods: Twenty FL cases with available clinic data were included in this study. Thirteen of these cases were symptomatic who were later treated with R-chemo whereas rest of the cases were asymptomatic who were in watchful-waiting. Plasma cfDNA, granulocyte DNA, and FFPE tumor tissue DNA samples were obtained from treatment-naive FL cases. A custom gene panel including exons and exon-intron boundaries of 110 FL-associated genes was constructed based on previously published studies for ultra-deep targeted sequencing. Paired-end sequencing of the captured regions were performed using a HiSeq system in Novogene, which generated 150 bp NGS reads. Targeted genomic regions were covered with > 1500X average effective sequencing depth for identification of somatic variants with low variant allele fractions (VAF). Variants present in cfDNA and tumor tissue DNA but not in patient-matched granulocyte DNA were identified with the GATK pipeline including the MuTect2 variant caller. Somatic variants associated with hematopoietic and lymphoid tissues in the COSMIC database were chosen for further analyses. The final high-confident list of variants was determined by visual investigation and through additional filtering of each variant using Integrative Genomics Viewer. Selected variants were cross-validated with Sanger sequencing. Survival analyses were performed with Survival and Survminer R packages. Results: Ultra-deep targeted sequencing revealed 91 somatic variants (71 missense, 12 nonsense, 4 indel, 4 splice site) in 31 genes included in the panel. Consistent with previous reports, the most frequently mutated genes were CREBBP (40%), BCL2 (30%), STAT6 (25%), EZH2 (20%), and CARD11 (20%). In symptomatic cases, 41.5% of the variants was present in both cfDNA and tumor tissue DNA, whereas 52.3% and 6.2% of them was present only in tumor tissue DNA or in cfDNA samples, respectively. In asymptomatic cases, 11.5% of the detected variants was present in both cfDNA and tumor tissue DNA, while 84.6% and 3.8% of them were in only tumor tissue DNA or cfDNA samples. Mutations previously reported to be associated with FL pathogenesis (e.g. KMT2D R2417*) were in the list of common variants observed in both cfDNA and tumor tissue DNA. We observed high Ki67 staining, elevated LDH levels, presence of BCL2 or CCND3 mutations to be significantly associated with progression-free survival (Figure 1A, B). Importantly, survival analysis by stratifying patients based on BCL2 mutations present only in cfDNA also predicted poor prognosis (Figure 1C). One of the FL patient who had progressive disease contained histological transformation-associated gene (i.e. B2M and BTG1) mutations only in the cfDNA but not in tumor tissue DNA sample. Finally, we cross-validated the selected somatic variants with VAF >20% using Sanger sequencing, which showed 100% consistency with NGS results. Conclusions: Tumor tissue-derived mutations can be detected in most FL patients albeit to a lesser extent than those in DLBCL. Plasma cfDNA genotyping may be useful for improving diagnosis and prognosis especially in symptomatic FL patients. Given that some somatic mutations associated with disease progression are detected only in plasma cfDNA samples, cfDNA genotyping may be useful for choosing appropriate therapy for high-risk FL patients. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 64 (9) ◽  
pp. 1338-1346 ◽  
Author(s):  
Shobha Silva ◽  
Sarah Danson ◽  
Dawn Teare ◽  
Fiona Taylor ◽  
James Bradford ◽  
...  

Abstract BACKGROUND A substantial number of melanoma patients develop local or metastatic recurrence, and early detection of these is vital to maximise benefit from new therapies such as inhibitors of BRAF and MEK, or immune checkpoints. This study explored the use of novel DNA copy-number profiles in circulating cell-free DNA (cfDNA) as a potential biomarker of active disease and survival. PATIENTS AND METHODS Melanoma patients were recruited from oncology and dermatology clinics in Sheffield, UK, and cfDNA was isolated from stored blood plasma. Using low-coverage whole-genome sequencing, we created copy-number profiles from cfDNA from 83 melanoma patients, 44 of whom had active disease. We used scoring algorithms to summarize copy-number aberrations and investigated their utility in multivariable logistic and Cox regression analyses. RESULTS The copy-number aberration score (CNAS) was a good discriminator of active disease (odds ratio, 3.1; 95% CI, 1.5–6.2; P = 0.002), and CNAS above or below the 75th percentile remained a significant discriminator in multivariable analysis for active disease (P = 0.019, with area under ROC curve of 0.90). Additionally, mortality was higher in those with CNASs above the 75th percentile than in those with lower scores (HR, 3.4; 95% CI, 1.5–7.9; P = 0.005), adjusting for stage of disease, disease status (active or resected), BRAF status, and cfDNA concentration. CONCLUSIONS This study demonstrates the potential of a de novo approach utilizing copy-number profiling of cfDNA as a biomarker of active disease and survival in melanoma. Longitudinal analysis of copy-number profiles as an early marker of relapsed disease is warranted.


2017 ◽  
Vol 23 (20) ◽  
pp. 6305-6314 ◽  
Author(s):  
Nadine Van Roy ◽  
Malaïka Van Der Linden ◽  
Björn Menten ◽  
Annelies Dheedene ◽  
Charlotte Vandeputte ◽  
...  

2020 ◽  
Author(s):  
Zuyang Yuan ◽  
Xinfeng Wang ◽  
Xiao Geng ◽  
Yin Li ◽  
Juwei Mu ◽  
...  

Abstract Background: The aim of this study was to assess whether both ubiquitous and heterogeneous somatic mutations could be detected in circulating cell-free DNA (cfDNA) from patients with esophageal squamous cell carcinoma (ESCC). Methods: Paired multi-regional tumor tissues, cfDNA and white blood cells (WBCs) collected from five ESCC patients before treatment from a prospective study (NCT02395705). Of them, samples from Cohort 1 (E102 and E110) were sequenced by whole-exome sequencing (WES) and those from Cohort 2 (E104, E111 and E121) were sequenced by targeted captured sequencing with a panel of 560 cancer-related genes respectively. To call somatic single nucleotide variations (SNVs) by comparing the solid tumor or cfDNA with matched WBCs, the minimal variant allele frequency (VAFmin) as 0.1% and P value <0.05 were allowed. Results: Genomic DNA (gDNA) and plasma-derived cfDNA from 26 samples were successfully sequenced. In Cohort 1, 596 (596/712, 83%) and 562 (562/796, 71%) were heterogeneous SNVs in E102 and E110 respectively. There was a statistically significant linear relationship between the VAFs for tumor and cfDNA (R2 = 0.78, P <0.0001). In Cohort 2, 296 (296/323, 92%), 384 (384/423, 91%) and 331 (331/357, 93%) were heterogeneous SNVs in E104, E111 and E121respectively. cfDNA could recover an average of 60.7% (31/51; range, 35.7%-76.2%) of somatic mutations present in matched solid tumors. The correlation of VAFs between cfDNA and matched solid tumor was significantly positive (r2 =0.92, P <0.0001).Conclusions: Both sequencing approaches revealed the highly intratumoral heterogeneity in ESCC and enabled the detection of both ubiquitous and heterogeneous mutations in cfDNA. Further validation in cfDNA is required to define its potential utility for ESCC in clinical practice. Trial registrationAll patients selected in this study were from the registered clinical trial from ClinicalTrials.gov (NCT02395705). Date of registration: March 24, 2015.


2020 ◽  
Vol 10 ◽  
Author(s):  
Xuan Jiang ◽  
Weihua Li ◽  
Jiaxin Yang ◽  
Shuzhen Wang ◽  
Dongyan Cao ◽  
...  

ObjectivesThe aim of this study was to identify tumor-derived DNA from Papanicolaou (Pap) smear and plasma specimens collected from patients with endometrial cancer or atypical hyperplasia (EC/AH) or epithelial ovarian cancer (OC).MethodsTumor tissues, peripheral blood, and Pap smear samples were collected from patients with EC/AH and patients with epithelial OC. Somatic mutations of tumor specimens in EC/AH and OC were examined by whole-exome sequencing using a 127-driver gene panel from The Cancer Genome Atlas (TCGA). A nine-gene EC/AH panel and an eight-gene OC panel were established based on the identified significantly mutated genes in the EC/AH and OC tumor specimens. Circulating single-molecule amplification and resequencing technology (cSMART) was applied to evaluate somatic mutations in Pap smear DNA and plasma circulating cell-free DNA (ccfDNA) using the EC/AH and OC gene panels.ResultsIn EC/AH group, there existed 22 tumors and 14 of the 22 tumors contributed hot spot mutations for the EC/AH nine-gene panel. In the Pap smear subgroup, all 21 Pap smears tested positive. Nine out of 11 (81.8%) identified the same gene mutations with their matched tumors and the remaining 10 Pap smears all tested positive. In the plasma subgroup, 10 out of 26 (38.5%) plasmas tested positive. One out of 13 (7.7%) identified the same gene mutation with its matched tumor and 5 out of the remaining 13 plasmas (38.5%) tested positive. In OC group, there existed 17 tumors and 16 of the 17 tumors contributed hot spot mutations for the OC eight-gene panel. In the Pap smear subgroup, all 11 Pap smears tested positive. Five out of 10 (50.0%) identified the same gene mutations with their matched tumors and the remaining one Pap smear also tested positive. In the plasma subgroup, all 22 plasmas tested positive. Ten out of 14 (71.4%) identified the same gene mutation with their matched tumors and the remaining 4 plasmas all tested positive.ConclusionsTumor-derived DNA can be detected in Pap smears and plasmas from patients with EC/AH or epithelial OC. Using a small gene-panel, early detection of EC/AH and OC might be promising. However, the value of plasma ccfDNA for EC/AH requires further investigation.


2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 495-495 ◽  
Author(s):  
Armin Soave ◽  
Heidi Schwarzenbach ◽  
Malte Vetterlein ◽  
Jessica Rührup ◽  
Oliver Engel ◽  
...  

495 Background: To investigate detection and oncological impact of circulating tumor cells (CTC) in bladder cancer patients with presence of copy number variations (CNV) of circulating cell-free DNA (cfDNA) treated with radical cystectomy (RC). Methods: Secondary analysis of 85 bladder cancer patients, who were prospectively enrolled and treated with RC at our institution between 2011 and 2014. Blood samples were obtained preoperatively. For CTC analysis, blood was analyzed with the CellSearch system (Janssen). cfDNA was extracted from serum using the PME DNA Extraction kit (Analytik Jena). Multiplex ligation-dependent probe amplification (MLPA) was carried out to identify CNV of cfDNA. In a single reaction MLPA allows analyzing CNV in 43 chromosomal regions containing 37 genes. Results: MLPA was suitable for characterization of CNV in 72 patients (84.7%). Data on CTC was available for 45 of these patients (62.5%). In total, 7 patients (15.6%) had CTC with a median CTC count of one (IQR: 1-3). In 21 patients (46.7%), one to 6 deleted or amplified chromosomal regions were detected with a median CNV count of 2 (IQR: 1-2). Overall, most changes were located in the genes CDH1, RIPK2 and ZFHX3 in 8 patients (17.8%), 6 patients (13.3%) and 5 patients (11.1%). Chromosomal aberrations were most frequently found on chromosome 8 in 8 patients (17.8%). Overall, presence of CTC was not associated with CNV status. However, presence of CTC was associated with copy number losses in miR-15a (p = 0.011). Patients with CTC had reduced recurrence-free survival (RFS) compared to patients without CTC (p = 0.012). In combined Kaplan-Meier analysis, patients with CTC plus presence of CNV had reduced cancer-specific survival (CSS) and RFS compared to patients without CTC but with presence of CNV (p≤0.035). In addition, patients with CTC plus presence of CNV had reduced RFS compared to patients without CTC and without presence of CNV (p = 0.028). Conclusions: CTC and CNV of various genes are detectable in peripheral blood of bladder cancer patients. The presence of CTC seems to be associated with CNV of specific genes. CTC have a negative impact on survival in patients with and without presence of CNV.


Sign in / Sign up

Export Citation Format

Share Document