Session V: In vivo Surveillance by NK Cells of Viruses, Parasites and Cancer Cells

1998 ◽  
Vol 16 (2-3) ◽  
pp. 115-123
Keyword(s):  
Nk Cells ◽  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A565-A565
Author(s):  
Isaac Chan ◽  
Hildur Knútsdóttir ◽  
Gayathri Ramakrishnan ◽  
Veena Padmanaban ◽  
Manisha Warrier ◽  
...  

BackgroundMetastatic disease drives breast cancer mortality. We recently discovered that leading cells at the invasive edge of mammary tumor organoids retain a conserved basal epithelial program defined by their expression of keratin-14 (K14), establishing K14 as a good marker of invasive breast cancer cells. K14-positive invasive cells also exhibit characteristics that make them targets of immunosurveillance by natural killer (NK) cells. While NK cells are key immune mediators in the control of metastasis, our understanding of the specific mechanisms behind this regulation and its eventual evasion by metastatic cells remains incomplete.MethodsWe have developed a novel preclinical 3D co-culture assay to discover mechanisms behind interactions between K14+ invasive breast cancer cells and NK cells. Combined with in vivo assays of metastasis, we are able to determine how NK cells limit the early stages of metastasis and also how tumor cells can influence key NK cell properties.ResultsIn ex vivo co-culture assays of NK cells isolated from healthy mouse donors and mammary tumor organoids from MMTV-PyMT and C31T mouse models of breast cancer, we demonstrate that NK cells limit the early stages of metastasis. Antibodies to invasive K14+ cells were able to enhance the ability of NK cells to limit colony formation, suggesting antibody-dependent cell mediated cytotoxicity. Surprisingly, when isolated from tumor bearing mice, NK cells did not limit invasion and instead promoted colony formation. The in vivo adoptive transfer of NK cells from healthy donors prevents the progression of early lung metastatic seeds to macrometastases, while the adoptive transfer of cells isolated from tumor bearing donors promotes macrometastatic development. Transcriptomic analysis of reprogrammed NK cells demonstrate they have similar profiles to resting NK cells. This growth promoting phenotype can be reversed with antibodies targeting inhibitory cell surface receptors or the epigenome.ConclusionsOur ex vivo and in vivo data demonstrate that healthy donor NK cells can limit metastasis through the directed cytotoxicity against pioneering K14+ invasive cells. However, prolonged exposure to tumors reprogram NK cells from tumor killing to tumor promoting, specifically in promoting the outgrowth of macrometastases. Further, we can neutralize this effect using NK cell specific inhibitory antibodies and epigenetic modifiers. This is the first time inhibitory signaling on NK cells have been linked with a growth promoting phenotype. These data can provide insight into when the use of NK cell directed therapies can be used to treat or prevent clinically relevant metastatic disease.


2021 ◽  
Author(s):  
Abdul S. Qadir ◽  
Jean Philippe Guégan ◽  
Christophe Ginestier ◽  
Assia Chaibi ◽  
Alban Bessede ◽  
...  

AbstractThe apoptosis inducing receptor CD95/Fas has multiple tumorigenic activities. Stimulation by its cognate ligand CD95L on many cancer cells increases their growth, motility, ability to invade and/or their cancer stemness. Using genetically engineered mouse models of ovarian and liver cancer, we previously reported that deletion of CD95 in the tumor cells strongly reduced their ability to grow in vivo [1, 2]. Using a combination of immune-deficient and immune-competent mouse models, we now establish that loss of CD95 in metastatic triple negative breast cancer cells prevents tumor growth by modulating the immune landscape. CD95 deficient but not wild-type tumors barely grow in an immune-competent environment and show an increase in immune infiltrates into the tumor. This growth reduction is caused by NK cells and does not involve CD8+ T cells. On the other hand, in immune compromised mice CD95 k.o. cells are not growth inhibited, but they fail to form metastases. In summary, we demonstrate that in addition to its tumor and metastasis promoting activities, CD95 expression by tumor cells can exert immune suppressive activities providing a new target for immune therapy.


2020 ◽  
Vol 219 (9) ◽  
Author(s):  
Isaac S. Chan ◽  
Hildur Knútsdóttir ◽  
Gayathri Ramakrishnan ◽  
Veena Padmanaban ◽  
Manisha Warrier ◽  
...  

Natural killer (NK) cells have potent antitumor and antimetastatic activity. It is incompletely understood how cancer cells escape NK cell surveillance. Using ex vivo and in vivo models of metastasis, we establish that keratin-14+ breast cancer cells are vulnerable to NK cells. We then discovered that exposure to cancer cells causes NK cells to lose their cytotoxic ability and promote metastatic outgrowth. Gene expression comparisons revealed that healthy NK cells have an active NK cell molecular phenotype, whereas tumor-exposed (teNK) cells resemble resting NK cells. Receptor–ligand analysis between teNK cells and tumor cells revealed multiple potential targets. We next showed that treatment with antibodies targeting TIGIT, antibodies targeting KLRG1, or small-molecule inhibitors of DNA methyltransferases (DMNT) each reduced colony formation. Combinations of DNMT inhibitors with anti-TIGIT or anti-KLRG1 antibodies further reduced metastatic potential. We propose that NK-directed therapies targeting these pathways would be effective in the adjuvant setting to prevent metastatic recurrence.


Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document