scholarly journals Cancer cells educate natural killer cells to a metastasis-promoting cell state

2020 ◽  
Vol 219 (9) ◽  
Author(s):  
Isaac S. Chan ◽  
Hildur Knútsdóttir ◽  
Gayathri Ramakrishnan ◽  
Veena Padmanaban ◽  
Manisha Warrier ◽  
...  

Natural killer (NK) cells have potent antitumor and antimetastatic activity. It is incompletely understood how cancer cells escape NK cell surveillance. Using ex vivo and in vivo models of metastasis, we establish that keratin-14+ breast cancer cells are vulnerable to NK cells. We then discovered that exposure to cancer cells causes NK cells to lose their cytotoxic ability and promote metastatic outgrowth. Gene expression comparisons revealed that healthy NK cells have an active NK cell molecular phenotype, whereas tumor-exposed (teNK) cells resemble resting NK cells. Receptor–ligand analysis between teNK cells and tumor cells revealed multiple potential targets. We next showed that treatment with antibodies targeting TIGIT, antibodies targeting KLRG1, or small-molecule inhibitors of DNA methyltransferases (DMNT) each reduced colony formation. Combinations of DNMT inhibitors with anti-TIGIT or anti-KLRG1 antibodies further reduced metastatic potential. We propose that NK-directed therapies targeting these pathways would be effective in the adjuvant setting to prevent metastatic recurrence.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 341-341
Author(s):  
Lucila Kerbauy ◽  
Mecit Kaplan ◽  
Pinaki P Banerjee ◽  
Francesca Lorraine Wei Inng Lim ◽  
Ana Karen Nunes Cortes ◽  
...  

Abstract Chimeric antigen receptors to redirect T cell specificity against tumor antigens have shown remarkable clinical responses against CD19+ malignancies. However, the manufacture of an engineered autologous T cell product is expensive and cumbersome. Natural killer (NK) cells provide an alternative source of immune effectors for the treatment of cancer. NK cell cytolytic function can be directed towards specific targets by exploiting their ability to mediate antibody-dependent cellular cytotoxicity (ADCC) through the NK cell Fc receptor, CD16 (FcγRIIIa). AFM13 is a tetravalent bispecific antibody construct based on Affimed's ROCK™ platform. AFM13 is bispecific for CD30 and CD16A, designed for the treatment of CD30 expressing malignancies. It binds CD16A on the surface of NK cells, thus activating and recruiting them to CD30 expressing tumor cells and mediating subsequent tumor cell killing. Since autologous NK effector function is impaired in many patients with malignancies, we propose to overcome this by the use of allogeneic NK cells in combination with AFM13. Cord blood (CB) is a readily available ("off-the-shelf") source of allogeneic NK cells that can be expanded to large, highly functional therapeutic doses. The feasibility and safety of therapy with allogeneic ex vivo expanded CB-derived NK cells have been shown by our group and others. In this study, we hypothesized that we can redirect the specificity of NK cells against CD30+ malignancies by preloading ex vivo activated and expanded CB-derived NK cells with AFM13 prior to adoptive infusion. Briefly, mononuclear cells were isolated from fresh or frozen CB units by ficoll density gradient centrifugation. CD56+ NK cells were cultured with rhIL-12, rhIL-18 and rhIL-15 for 16 hrs, followed by ex vivo expansion with rhIL-2 and irradiated (100 Gy) K562-based feeder cells expressing membrane-bound IL-21 and CD137-ligand (2:1 feeder cell:NK ratio). After 14 days, NK cells were loaded with serial dilutions of AFM13 (0.1, 1, 10 and 100 mg/ml). After washing twice with PBS, we tested the effector function of AFM13-loaded NK-cells (AFM13-NK) compared to expanded CB-NK cells without AFM13 against Karpas-299 (CD30 positive) and Daudi (CD30 negative) lymphoma cell lines by 51Cr release and intracellular cytokine production assays. AFM13-NK cells killed Karpas-299 cells more effectively at all effector:target ratios tested than unloaded NK cells (Figure 1) and produced statistically more INFγ and CD107a (P=0.0034; P=0.0031 respectively, n=4). In contrast, AFM13-NK cells and unloaded NK cells exerted similar cytotoxicity against Daudi cells. Next, we established the optimal concentration of AFM13 for loading (determined to be 100 μg/ml) and the optimal incubation time to obtain maximal activity (1 h) in a series of in vitro experiments. We also confirmed that the activity of AFM13-NK cells against Karpas-299 cells remains stable for at least 72h post-wash (Figure 2). Additionally, we characterized the phenotype of AFM13-NK vs. unloaded NK cells by flow cytometry using monoclonal antibodies against 22 markers, including markers of activation, inhibitory receptors, exhaustion markers and transcription factors. Compared to unloaded NK cells, AFM13-NK cells expressed higher levels of CD25, CD69, TRAIL, NKp44, granzyme B and CD57, consistent with an activated phenotype. We next tested the in vivo anti-tumor efficacy of AFM13-NK cells in an immunodeficient mouse model of FFluc-Karpas-299. Briefly, six groups of NOD/SCID/IL2Rγc null mice (n=5 per group) were transplanted by tail-vein injection with 1 x 10e5 FFluc-transduced Karpas cells. Group 1 and 6 received tumor alone or tumor + AFM13 and served as a control. Groups 2-4 receive Karpas FFLuc with either expanded NK cells or AFM13-NK cells (NK cells loaded with AFM13) or expanded NK cells and AFM13 injected separately. Group 5 received AFM13-NK cells without tumor. Initial studies confirm the antitumor activity of AFM13-NK cells. In summary, we have developed a novel premixed product, comprised of expanded CB-NK cells loaded with AFM13 to 'redirect' their specificity against CD30+ malignancies. The encouraging in vitro and in vivo data observed in this study, provide a strong rationale for a clinical trial to test the strategy of an off-the-shelf adoptive immunotherapy with AFM13-loaded CB-NK cells in patients with relapsed/refractory CD30+ malignancies. Disclosures Champlin: Sanofi: Research Funding; Otsuka: Research Funding. Koch:Affimed GmbH: Employment. Treder:Affimed GmbH: Employment. Shpall:Affirmed GmbH: Research Funding. Rezvani:Affirmed GmbH: Research Funding.


2019 ◽  
Vol 37 (8_suppl) ◽  
pp. 36-36
Author(s):  
Sean J. Judge ◽  
Cordelia Dunai ◽  
Ian R. Sturgill ◽  
Kevin M. Stoffel ◽  
William J. Murphy ◽  
...  

36 Background: Blockade of the PD-1/PD-L1/2 axis has revolutionized cancer therapy. Although reinvigorated PD-1+ T cells are the main effectors in the response to checkpoint blockade, the contribution of Natural Killer (NK) cells to PD-1/PD-L1 inhibition is under debate. While PD-1 has been identified on NK cells, this appears to be restricted to small populations under limited conditions. We sought to evaluate the extent of PD-1 expression in mouse and human resting and activated NK cells. Methods: Human NK cells were isolated from healthy donor PBMCs and cancer patients. Ex vivo activation and proliferation techniques included recombinant human cytokine and feeder line co-culture. Murine NK cells were isolated from splenocytes, and PBMCs from wild type and immunodeficient mice. We assessed NK cell surface markers and intracellular cytokine by flow cytometry, and gene expression by quantitative RT-PCR. Results: Over 21-days of ex vivo expansion, expression of PD-1 or PD-L1 on human NK cells was < 1% at all time points, while TIGIT+ expression increased to > 85%. Conversely, ConA stimulation of T cells increased PD-1 expression with no change in TIGIT expression. QRT-PCR demonstrated absent PD-1 expression in purified NK cells compared to a 5-fold increase in PD-1 gene expression in ConA stimulated PBMCs. PD-1/PD-L1 was also < 1% in the NK92 cell line and < 2.5% in peripheral CD56+CD3- NK cells from patients with soft tissue sarcoma (STS). NK cells from digested freshly resected STS show variable PD-1 ( < 10%) and minimal PD-L1 ( < 1%) expression with a small, but measurable population of intra-tumoral NK cells (1% of immune cells). In vivo mouse studies showed < 5% PD-1+ NK cells in spleen and tumor of CT26 tumor-bearing mice, while PD-L1+ NK cells increased in frequency from spleen (5-35%) to tumor (40-95%) in both wild type BALB/C and SCID mice. Conclusions: In contrast to prior studies, we did not observe a substantial PD-1+ population on human or murine NK cells after multiple activation strategies compared to T cells. Contrary to its application in T cells, our data suggest that PD-1 is not a useful marker for NK cell exhaustion/dysfunction. PD-L1 on NK cells may represent an important link between NK and T cell immunotherapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2293-2293
Author(s):  
Ekta Kapadia ◽  
Elad Jacoby ◽  
Mark Kohler ◽  
Waleed Haso ◽  
Christopher Daniel Chien ◽  
...  

Abstract Childhood leukemia is the most common pediatric malignancy. There are now excellent cure rates for these patients, however outcomes remain poor for those with refractory disease and for those who relapse after standard salvage therapies, with a disease recurrence of approximately 50%. Therefore, development of novel cellular therapies is essential to treat these refractory patients. Natural Killer (NK) cells generated from an allograft contribute to improved disease free survival after Hematopoietic Stem Cell Transplantation for leukemia when there is a KIR mismatch. This effect appears to be particularly potent in the setting of Acute Myelogenous Leukemia (AML) with less benefit demonstrated in Acute Lymphoblastic Leukemia (ALL). Preclinical studies have also suggested that activation and expansion of resting NK cells can enhance NK cell cytotoxicity and eliminate the need for KIR mismatch due to up-regulation of activating receptors. We are currently testing this approach in the clinic following a fully matched allogeneic transplant platform for leukemia. Our aim is to explore whether 41BB ligand (41BBL) and recombinant IL-15 (rIL-15) mediated ex vivo expansion of autologous NK cells results in enhanced activity against AML and ALL. The activation/expansion process may allow for the use of autologous NK cell infusions, thus eliminating the need for allogeneic NK cell donors. To test this hypothesis, we ex vivo expanded and activated NK cells derived from C57BL/6J (B6) mice using artificial Antigen Presenting Cells (aAPCs) containing 41BBL and rIL-15 for 7-14 days. NK cells were co-cultured with murine AML cells (C1498) and murine ALL cells (E2A-PBX) – both on B6 background. Controls included YAC cells (murine T-cell lymphoma cell line sensitive to NK cell killing) as well as Phorbol Myristate Acetate (PMA)/ionomycin. All cells were co-cultured for 5 hours prior to functional assessment of NK cells via CD107a degranulation. NK cells cultured with 41BBL aAPCs and rIL-15 had a 30-fold expansion in numbers (Figure 1) and an increase in purity to approximately 95-98% (NK1.1+, CD3–) by Day 7. In the absence of cytokine or aAPCs, cultured NK cells underwent rapid apoptosis. Functionally, although resting NK cells (harvested prior to assessment) expressed CD107a when cultured with YAC cells and PMA, only minimal degranulation was observed in the presence of autologous AML cells or ALL cells. In contrast, activated and expanded autologous NK cells displayed enhanced activity against ALL, AML, as well as YAC cells, while only minimal levels of CD107a were seen in the absence of targets (Figure 2). In vivo experiments with a single injection of activated and expanded NK cells did not result in prolonged survival of mice bearing either AML or ALL. Assessment of adoptively transferred NK cells demonstrated very transient persistence (<2 days) with no in vivo expansion, suggesting that repeated injections may be necessary for leukemia eradication. Future murine experiments will investigate the effect repeated injections of activated/expanded NK cells and/or the administration of rIL-15 will have on survival and leukemia eradication. In addition, the ability to activate and expand NK cells in culture provides an opportunity for lentiviral-based transduction with chimeric antigen receptor (CAR) vectors. We are currently testing this with a murine CD19 CAR. These experiments suggest that autologous activated and expanded NK cells may serve as a viable cellular therapy for pediatric patients with refractory/relapsed leukemia. As demonstrated in these in vitro experiments, autologous activated/expanded NK cells still show increased targeting of mouse AML and ALL cell lines despite the lack of KIR mismatch. Thus, they may serve as a potential platform for leukemia therapy, including ALL, which appear to be poor targets for resting NK cells. In addition, these cells demonstrate transient persistence in vivo, a potential advantage in the context of redirected cytotoxicity using CAR constructs that target antigens with broader expression in the hematopoietic compartment. Figure 1: <![if !vml]><![endif]> Figure 1:. <![if !vml]><![endif]> Figure 2: Figure 2:. Disclosures No relevant conflicts of interest to declare.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 247-253 ◽  
Author(s):  
Jeffrey S. Miller

Abstract Natural killer (NK) cells recognize targets stressed by malignant transformation or infection (particularly CMV). We now know that NK cells can be long-lived and remember past exposures. They become educated by interaction with MHC class I molecules to gain potent function to kill targets and produce cytokines. In the clinical setting, haploidentical NK cells can be transferred adoptively to treat cancer. Persistence and in vivo expansion of NK cells depends on lymphodepleting chemotherapy to make space for the release of endogenous IL-15. In vivo expansion is also enhanced by cytokine administration. IL-2 has been used at low doses to stimulate NK cells in vivo, but has the down side of stimulating CD25hi regulatory T cells. IL-15 is now being tested and has the advantage of avoiding inhibitory regulatory T cell stimulation. In refractory acute myeloid leukemia, leukemia clearance is correlated with the persistence and in vivo expansion of NK cells after adoptive transfer. Limitations to NK cell therapy include poor in vivo survival and lack of specificity. Monoclonal antibodies and bispecific or trispecific killer engagers to target CD16 on NK cells to enhance recognition of various tumor antigens and ADAM17 inhibition to prevent CD16 shedding after NK cell activation should promote enhanced killing of cancer with specificity. Future strategies to exploit favorable donor immunogenetics or to expand NK cells ex vivo from blood, progenitors, or pluripotent progenitors may overcome immune barriers of adoptive transfer and comparative clinical trials will be needed to test these approaches.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A569-A569
Author(s):  
Alicia Gingrich ◽  
Taylor Reiter ◽  
Sean Judge ◽  
Daniel York ◽  
Mio Yanagisawa ◽  
...  

BackgroundNatural killer (NK) cells are key effectors of the innate immune system, but major differences between human and murine NK cells impede translation. Outbred dogs offer an important link for NK-based cancer immunotherapy studies. We compared gene expression profiles of dog NK signatures in vitro and from a phase I clinical trial of inhaled IL-15, and analyzed dog, mouse and human NK cells using a novel orthologous transcriptome.MethodsWe performed differential gene expression (DGE) using resting healthy donor CD5dim NK populations and following ex vivo activation using recombinant human (rh)IL-15 or co-culture with irradiated feeder cells. Eight dogs with naturally-occurring pulmonary metastases were enrolled on a Phase I clinical trial of inhaled rhIL-15 using a 3+3 cohort design with escalating doses of inhaled rhIL-15. Blood was collected from study dogs before, during, and after therapy. We compared DGE among healthy and cancer-bearing dogs and then across mouse, dog and human NK cells in resting and activated states using ~7000 1:1 orthologous genes.ResultsDGE revealed distinct transcriptional profiles between the ex vivo resting, IL-15 and co-cultured canine NK cells. Among treated patients, hierarchical clustering revealed that in vivo NK cell transcriptional signatures grouped by individual dog, and not amount of time exposed to treatment. PCA showed in vivo profiles of the clinical responders were distinctly separate from the non-responding patients (PC1 38%, PC2 12%). Patient in vivo NK cell transcription profiles most closely resembled those of ex vivo resting NK cells and not IL-15 treated or co-culture activated (PC1 43%, PC2 19%), likely reflecting key differences in activation. In cross-species analysis, PCA showed within-species spatial clustering of resting NK cells. After activation, variance between dog and human NK cells decreased, while variance between human and mouse NK cells increased (PC1 40%, PC2 28%).ConclusionsIn this first transcriptomic sequencing of dog NK cells, we demonstrate distinct gene profiles of ex vivo activated NK cells from healthy donors compared to circulating NK cells from dogs receiving inhaled rhIL-15 on a clinical trial. Baseline in vivo NK cell profiles appear to predict response to therapy more than changes over time. We also show distinct gene profiles of NK cells across the most commonly used mouse, dog, and human NK populations, with convergence of dog and human NK cells after activation. By defining the canine NK cell DGE signatures, these data fill a gap in translational NK studies.Ethics ApprovalThe canine clinical trial study was approved by IACUC and Clinical Trials Review Board (Inhaled IL-15 Immunotherapy for Treatment of Lung Metastases, Protocol #20179).


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A565-A565
Author(s):  
Isaac Chan ◽  
Hildur Knútsdóttir ◽  
Gayathri Ramakrishnan ◽  
Veena Padmanaban ◽  
Manisha Warrier ◽  
...  

BackgroundMetastatic disease drives breast cancer mortality. We recently discovered that leading cells at the invasive edge of mammary tumor organoids retain a conserved basal epithelial program defined by their expression of keratin-14 (K14), establishing K14 as a good marker of invasive breast cancer cells. K14-positive invasive cells also exhibit characteristics that make them targets of immunosurveillance by natural killer (NK) cells. While NK cells are key immune mediators in the control of metastasis, our understanding of the specific mechanisms behind this regulation and its eventual evasion by metastatic cells remains incomplete.MethodsWe have developed a novel preclinical 3D co-culture assay to discover mechanisms behind interactions between K14+ invasive breast cancer cells and NK cells. Combined with in vivo assays of metastasis, we are able to determine how NK cells limit the early stages of metastasis and also how tumor cells can influence key NK cell properties.ResultsIn ex vivo co-culture assays of NK cells isolated from healthy mouse donors and mammary tumor organoids from MMTV-PyMT and C31T mouse models of breast cancer, we demonstrate that NK cells limit the early stages of metastasis. Antibodies to invasive K14+ cells were able to enhance the ability of NK cells to limit colony formation, suggesting antibody-dependent cell mediated cytotoxicity. Surprisingly, when isolated from tumor bearing mice, NK cells did not limit invasion and instead promoted colony formation. The in vivo adoptive transfer of NK cells from healthy donors prevents the progression of early lung metastatic seeds to macrometastases, while the adoptive transfer of cells isolated from tumor bearing donors promotes macrometastatic development. Transcriptomic analysis of reprogrammed NK cells demonstrate they have similar profiles to resting NK cells. This growth promoting phenotype can be reversed with antibodies targeting inhibitory cell surface receptors or the epigenome.ConclusionsOur ex vivo and in vivo data demonstrate that healthy donor NK cells can limit metastasis through the directed cytotoxicity against pioneering K14+ invasive cells. However, prolonged exposure to tumors reprogram NK cells from tumor killing to tumor promoting, specifically in promoting the outgrowth of macrometastases. Further, we can neutralize this effect using NK cell specific inhibitory antibodies and epigenetic modifiers. This is the first time inhibitory signaling on NK cells have been linked with a growth promoting phenotype. These data can provide insight into when the use of NK cell directed therapies can be used to treat or prevent clinically relevant metastatic disease.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A151-A151
Author(s):  
Yeonhee Yun ◽  
Jiao Wang ◽  
Karen Pollok ◽  
Tony Sinn ◽  
Randy Brutkiewicz ◽  
...  

BackgroundGlioblastoma (GBM) is a deadly brain malignancy with a dismal prognosis. While immunotherapy holds great promise for GBM treatment, most have failed due to a suppressive tumor microenvironment (TME). Antigen heterogeneity and adenosine signaling are two immunosuppressive mechanisms in GBM. The CD73-adenosine axis plays a multifaceted role in GBM pathogenesis and drives the dysfunction of NK cells in GBM TME.1,3 Our NKG2D-chimeric antigen receptor (CAR)-natural killer (NK) cells have shown anti-tumor activity when combined with CD73 blockade in vivo.2 To further extend the potency of these cells against GBM and address antigen heterogeneity in GBM, we combined the local blockade of CD73 with multi-antigen-targeting engineered NK cells. In order to improve treatment assessment, PET/MR imaging was employed to enable detailed, non-invasive assessment of tumor progression. Imaging assessment of adoptively-transferred CAR- NK cells was also developed to determine the fate of NK cell delivery to the tumor site over time.MethodsWe generated multifunctional engineered NK (E-NK) cells that express an anti-CD73 scFv, which is cleavable by GBM-associated proteases, an NKG2D-CAR, as well as a GD2 CAR, which can actively target the GD2 antigen overexpressed on GBM (Figure 1A). For E-NK cell radiolabeling, zirconium-89 (89Zr, ½ life = 78 Hr) radiotracer was attached covalently to the E-NK cell surface via conjugation with DFO-Bz-NCS in a range of doses from 50–600 µCi.ResultsAn optimal balance between labeling efficiency and cell viability was attained at 120 µCi 89Zr resulting in 39% labeling efficiency and 46% cell viability over for 48 hours. After labeling, the NK cells maintained their in vitro killing activity against GBM cells (figure 1B). The 89Zr labeled E-NK cells were administered intravenously in mice containing intracranial GBM10 tumors at week 5 post-implant. PET imaging was performed at 1 and 2 days later and gamma imaging ex vivo at 4 days. Free 89Zr was visible diffusely throughout the body with low levels in the brain. The majority of 89Zr labeled E-NK cell groups localized to the lungs with detectable activity elsewhere in various organs (figure 1C and 1D).Abstract 138 Figure 1PET imaging and gamma counting of the engineered NK cellsFigure 1 (A) Multifunctional, responsive CAR constructs; (B) In vitro killing activity against GBM43 cells after co-incubation with 89Zr labeled NK cells at an E:T ratio of 10 for 4 h with LDH assay (N=3); (C) & (D) In vivo PET imaging and ex vivo gamma counting with 89Zr at week 5 in 10 mice during 4 days, GBM intracranial implantation to NSG male mouse, 89Zr, 89Zr + NK cell, or 89Zr + E NK cell (7 × 106 cells with 500 µCi) was administered through intravenous injection, Qimage was used for the PET/MRI co-registration and analysisConclusionsWe generated multifunctional E-NK cells which showed the improved killing of GBM cells using novel targeting approaches, including the blockade of CD73-mediated adenosinergic signaling. We also optimized E-NK cell radiolabeling with 89Zr for GB10 therapy in vitro and in vivo fate mapping against a xenograft of patient-derived GBM.AcknowledgementsWe gratefully acknowledge the Walther Oncology Embedding Program, Indiana University Simon Cancer Center, and In Vivo Therapeutics Core.ReferencesWang J, Matosevic S. NT5E/CD73 as correlative factor of patient survival and natural killer cell infiltration in glioblastoma. J Clin Med 2019;8(10):1526.Wang J, Lupo KB, Chambers AM, Matosevic S. Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer 2018;6(1):136.Yan A, Joachims ML, Thompson LF, Miller AD, Canoll PD, Bynoe MS. CD73 promotes glioblastoma pathogenesis and enhances its chemoresistance via A2B adenosine receptor signaling. J Neurosci 2019;39(22):4387.Flink J, Muzi M, Peck M, Krohn K. Multimodality brain tumor imaging: mr imaging, PET, and PET/MR imaging. J Nucl 2015;5(10):1554–1561.


2021 ◽  
Vol 22 (2) ◽  
pp. 656
Author(s):  
Hantae Jo ◽  
Byungsun Cha ◽  
Haneul Kim ◽  
Sofia Brito ◽  
Byeong Mun Kwak ◽  
...  

Natural killer (NK) cells are lymphocytes that can directly destroy cancer cells. When NK cells are activated, CD56 and CD107a markers are able to recognize cancer cells and release perforin and granzyme B proteins that induce apoptosis in the targeted cells. In this study, we focused on the role of phytoncides in activating NK cells and promoting anticancer effects. We tested the effects of several phytoncide compounds on NK-92mi cells and demonstrated that α-pinene treatment exhibited higher anticancer effects, as observed by the increased levels of perforin, granzyme B, CD56 and CD107a. Furthermore, α-pinene treatment in NK-92mi cells increased NK cell cytotoxicity in two different cell lines, and immunoblot assays revealed that the ERK/AKT pathway is involved in NK cell cytotoxicity in response to phytoncides. Furthermore, CT-26 colon cancer cells were allografted subcutaneously into BALB/c mice, and α-pinene treatment then inhibited allografted tumor growth. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


Tumor Biology ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 551-559 ◽  
Author(s):  
Minoru Kobayashi ◽  
Tatsuo Morita ◽  
Nicole A. L. Chun ◽  
Aya Matsui ◽  
Masafumi Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document