Day-Night Differences in the Vesicle Populations of Nerve Terminals in the Rat and Chick Pineal Gland

1990 ◽  
Vol 137 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Robert LaPorte ◽  
Linda M. Fox ◽  
Karen Mosher ◽  
Sue Binkley ◽  
John A. McNulty
Keyword(s):  
2021 ◽  
Vol 118 (43) ◽  
pp. e2113852118
Author(s):  
Bo Hyun Lee ◽  
Bertil Hille ◽  
Duk-Su Koh

The pineal gland secretes melatonin principally at night. Regulated by norepinephrine released from sympathetic nerve terminals, adrenergic receptors on pinealocytes activate aralkylamine N-acetyltransferase that converts 5-hydroxytryptamine (5-HT, serotonin) to N-acetylserotonin, the precursor of melatonin. Previous studies from our group and others reveal significant constitutive secretion of 5-HT from pinealocytes. Here, using mass spectrometry, we demonstrated that the 5-HT is secreted primarily via a decynium-22–sensitive equilibrative plasma membrane monoamine transporter instead of by typical exocytotic quantal secretion. Activation of the endogenous 5-HT receptors on pinealocytes evoked an intracellular Ca2+ rise that was blocked by RS-102221, an antagonist of 5-HT2C receptors. Applied 5-HT did not evoke melatonin secretion by itself, but it did potentiate melatonin secretion evoked by submaximal norepinephrine. In addition, RS-102221 reduced the norepinephrine-induced melatonin secretion in strips of pineal gland, even when no exogenous 5-HT was added, suggesting that the 5-HT that is constitutively released from pinealocytes accumulates enough in the tissue to act as an autocrine feedback signal sensitizing melatonin release.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Morten Møller ◽  
Pansiri Phansuwan-Pujito ◽  
Corin Badiu

Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with largeboutons en passageand primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.


1977 ◽  
Vol 86 (3) ◽  
pp. 659-666 ◽  
Author(s):  
Maria Bäckström ◽  
Lennart Wetterberg

ABSTRACT 8-Methoxypsoralen (10−4 m) added to the medium of rat pineal glands in organ culture induces a five-fold increase of 14C-labelled N-acetylserotonin and melatonin formation when serotonin is used as 14C-labelled precursor. Addition of d-amphetamine (10−5 m) to pineal glands also results in an increase of N-acetylserotonin and melatonin formation. This increase is enhanced by the addition of 8-methoxypsoralen (10−5 m). In pineal glands pre-incubated for 24 h 8-methoxypsoralen (10−4 m) caused an increased production of N-acetylserotonin and melatonin. This indicates that the effect of 8-methoxypsoralen is mediated through a post-synaptic event and not by release of noradrenaline or blocked re-uptake of amines to nerve terminals in the pineal gland. Further studies of the clinical significance of the effect of psoralen on pineal gland metabolism seems warranted.


Author(s):  
M Wessendorf ◽  
A Beuning ◽  
D Cameron ◽  
J Williams ◽  
C Knox

Multi-color confocal scanning-laser microscopy (CSLM) allows examination of the relationships between neuronal somata and the nerve fibers surrounding them at sub-micron resolution in x,y, and z. Given these properties, it should be possible to use multi-color CSLM to identify relationships that might be synapses and eliminate those that are clearly too distant to be synapses. In previous studies of this type, pairs of images (e.g., red and green images for tissue stained with rhodamine and fluorescein) have been merged and examined for nerve terminals that appose a stained cell (see, for instance, Mason et al.). The above method suffers from two disadvantages, though. First, although it is possible to recognize appositions in which the varicosity abuts the cell in the x or y axes, it is more difficult to recognize them if the apposition is oriented at all in the z-axis—e.g., if the varicosity lies above or below the neuron rather than next to it. Second, using this method to identify potential appositions over an entire cell is time-consuming and tedious.


2021 ◽  
Vol 4 (1) ◽  
pp. 99-114
Author(s):  
Janaína B Garcia ◽  
Fernanda G Do Amaral ◽  
Daniela C Buonfiglio ◽  
Rafaela FA Vendrame ◽  
Patrícia L Alves ◽  
...  

The pineal gland synthesizes melatonin exclusively at night, which gives melatonin the characteristic of a temporal synchronizer of the physiological systems. Melatonin is a regulator of insulin activities centrally and also peripherally and its synthesis is reduced in diabetes.  Since monosodium glutamate (MSG) is often used to induce the type 2 diabetic and metabolic syndrome in animal models, the purpose of this work is to evaluate the potential effects of MSG given to neonates on the pineal melatonin synthesis in different aged male and female rats. Wistar rats were subcutaneously injected with MSG (4mg/g/day) or saline solution (0.9%) from the second to eighth post-natal day. The circadian profiles both melatonin levels and AANAT activity were monitored at different ages. Body weight, naso-anal length, adipose tissues weight, GTT, ITT and serum insulin levels were also evaluated. Typical obesity with the neonatal MSG treatment was observed, indicated by a great increase in adipose depots without a concurrent increase in body weight. MSG treatment did not cause hyperglycemia or glucose intolerance, but induced insulin resistance. An increase of melatonin synthesis at ZT 15 with phase advance was observed in in some animals. The AANAT activity was positively parallel to the melatonin circadian profile. It seems that MSG causes hypothalamic obesity which may increase AANAT activity and melatonin production in pineal gland. These effects were not temporally correlated with insulin resistance and hyperinsulinemia indicating the hypothalamic lesions, particularly in arcuate nucleus induced by MSG in early age, as the principal cause of the increase in melatonin production.


2020 ◽  
Vol 3 (4) ◽  
pp. 558-576
Author(s):  
Seithikurippu R Pandi-Perumal ◽  
Daniel P Cardinali ◽  
Russel J Reiter ◽  
Gregory M Brown

That the pineal gland is a source of melatonin is widely known; however, by comparison, few know of the much larger pool of extrapineal melatonin. That pool is widely distributed in all animals, including those that do not have a pineal gland, e.g., insects.  Extrapineal melatonin is not released into the blood but is used locally to function as an antioxidant, anti-inflammatory agent, etc. A major site of action of peripherally-produced melatonin is the mitochondria where it neutralizes reactive oxygen species (ROS) that are generated during oxidative phosphorylation. Its role also includes major actions as an immune modulator reducing overreactions to foreign agents while simultaneously boosting immune processes. During a pandemic such as coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, melatonin is capable of suppressing the damage inflicted by the cytokine storm. The implications of melatonin in susceptibility and treatment of COVID-19 disease are discussed. 


1972 ◽  
Vol 69 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Bryant Benson ◽  
Mary Jane Matthews ◽  
Alvin E. Rodin

ABSTRACT Continuing investigation of pineal gland function indicates that the anti-gonadotrophic activity of this organ cannot be attributed solely to the postulated hormone melatonin, the concentration of which is negligible in the pineal body compared to quantities required to produce unequivocal physiological effects. A non-melatonin antigonadotrophic substance recently isolated from bovine pineal glands was further purified by organic solvent extraction, ultrafiltration and gel filtration. Studies of partial blockage of compensatory ovarian hypertrophy in unilaterally ovariectomized Charles River CD-1 mice indicated that this substance is significantly more potent than melatonin in this test system.


Sign in / Sign up

Export Citation Format

Share Document