Omega–3 Fatty Acid Docosahexaenoic Acid Is the Precursor of Neuroprotectin D1 in the Nervous System

Author(s):  
Tiffany D. Niemoller ◽  
David T. Stark ◽  
Nicolas G. Bazan
1993 ◽  
Vol 71 (9) ◽  
pp. 699-706 ◽  
Author(s):  
Sheila M. Innis

Arachidonic acid (20:4ω−6) and docosahexaenoic acid (22:6ω−3) are major acyl components of cell membrane phospholipids, and are particularly enriched in the nonmyelin membranes of the central nervous system. Dietary deficiency of linoleic acid (18:2ω−6) and linolenic acid (18:3ω−3) during development has been shown to result in reduced levels of 20:4ω−6 and 22:6ω−3 in the developing central nervous system, and this has been associated with altered learning behaviour and visual function. Synthesis of 20:4ω−6 and 22:6ω−3 depends on the dietary intake of 18:2ω−6 and 18:3ω−3, respectively, and the activity of the fatty acid desaturase–elongase enzymes. Oxidation of 18:2ω−6 and 18:3ω−3 for energy, or direct acylation of 18:2ω−6 into triglycerides, cholesteryl esters, and phospholipids, could also influence the amount of 20:4ω−6 and 22:6ω−3 formed. The tissue levels of 20:4ω−6 and 22:6ω−3, or other (ω − 6) and (ω − 3) fatty acids, compatible with optimum growth and development or health are not known. The amount of preformed 22:6ω−3 in the diet of adults, infants fed various milks or formulae, or animals is reflected in the circulating lipid levels of 22:6ω−3. Human milk levels of (ω − 6) and (ω − 3) fatty acids vary, depending in part on the mother's diet. A valid, scientific approach to extrapolate dietary essential fatty acid requirements from the composition of human milk or the circulating lipids of infants fed different diets has not been agreed on. Current data suggest that fatty acid requirements for development of term-gestation piglet brain and retina are met with 5.0% dietary kcal (1 cal = 4.1868 J) 18:2ω−6 and > 1.0% kcal 18:3ω−3, As in rodents and non-human primates, a diet source of 20:4ω−6 and 22:6ω−3 does not seem essential for the developing piglet central nervous system. However, studies in very premature infants suggest these infants may benefit from a dietary source of 20:4ω−6 and 22:6ω−3. Whether the low 20:4ω−6 and 22:6ω−3 status is due to oxidation of 18:2ω−6 and 18:3ω−3 for energy, the effects of early intravenous feeding with lipid emulsions, rapid growth, or immaturity of physiological or metabolic pathways in very preterm infants is not yet known.Key words: linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, brain, retina.


2009 ◽  
Vol 12 (2) ◽  
pp. 48-56 ◽  
Author(s):  
David O. Kennedy ◽  
Philippa A. Jackson ◽  
Jade M. Elliott ◽  
Andrew B. Scholey ◽  
Bernadette C. Robertson ◽  
...  

Placenta ◽  
2014 ◽  
Vol 35 (9) ◽  
pp. A70 ◽  
Author(s):  
Theresa L. Powell ◽  
Christiane Meireles ◽  
Vanessa I. Ramirez ◽  
Evelyn Miller ◽  
Kevin W. Hakala ◽  
...  

2014 ◽  
Vol 60 (5) ◽  
pp. 267-275 ◽  
Author(s):  
Valeria A. Torok ◽  
Nigel J. Percy ◽  
Peter J. Moate ◽  
Kathy Ophel-Keller

The rumen microbiota contributes to greenhouse gas emissions and has an impact on feed efficiency and ruminant product fatty acid composition. Dietary fat supplements have shown promise in reducing enteric methane production and in altering the fatty acid profiles of ruminant-derived products, yet in vivo studies on how these impact the rumen microbiota are limited. In this study, we investigated the rumen bacterial, archaeal, fungal, and ciliate protozoan communities of dairy cows fed diets supplemented with 4 levels of docosahexaenoic acid (DHA) (0, 25, 50, and 75 g·cow−1·day−1) and established linkages between microbial communities and production parameters. Supplementation with DHA significantly (P < 0.05) altered rumen bacterial and archaeal, including methanogenic archaeal, communities but had no significant (P > 0.05) effects on rumen fungal or ciliate protozoan communities. Rumen bacterial communities of cows receiving no DHA were correlated with increased saturated fatty acids (C18:0 and C11:0) in their milk. Furthermore, rumen bacterial communities of cows receiving a diet supplemented with 50 g DHA·cow−1·day−1 were correlated with increases in monounsaturated fatty acids (C20:1n-9) and polyunsaturated fatty acids (C22:5n-3; C22:6n-3; C18:2 cis-9, trans-11; C22:3n-6; and C18:2n-6 trans) in their milk. The significant diet-associated changes in rumen archaeal communities observed did not result in altered enteric methane outputs in these cows.


Sign in / Sign up

Export Citation Format

Share Document