Antifungal Activity of the Essential Oil of Melaleuca alternifolia (Tea Tree Oil) against Pathogenic Fungi in vitro

1996 ◽  
Vol 9 (6) ◽  
pp. 388-394 ◽  
Author(s):  
P. Nenoff ◽  
U.-F. Haustein ◽  
W. Brandt
2007 ◽  
Vol 54 (2) ◽  
pp. 106-114
Author(s):  
D. Markovic ◽  
B. Mirkovic ◽  
T. Jovanovic ◽  
A. Knezevic ◽  
T. Nastovski

Essential oils are widely used in medicine, dentistry and cosmetology as flavour and odour corrigents in various substances for oral hygiene. The aim of this study was to present comprehensively the possibilities for application of Melaleuca Alternifolia essential oil in dentistry based on the analysis of contemporary scientific and professional publications. The application of Tea tree essential oil in the treatment of periodontal, fungal and viral diseases is very efficient. The study of antimicrobial potential of ten different essential oils confirmed the efficiency of Tea tree oil against numerous Gram+ and Gram- bacteria. In vitro studies of bacteriostatic, bactericidal and fungicidal effect of Tea tree oil solution against ten different microorganisms confirmed sensitivity of the following microorganisms: Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum and Porphyromonas gingivalis, and slightly weaker effect against Streptococcus Mutans and Prevotella intermedia. Tea tree is very effective in the treatment of various diseases and is an introduction and momentum for the application of plant substances in the treatment of numerous diseases in dentistry. .


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Carlota Gómez-Rincón ◽  
Elisa Langa ◽  
Paula Murillo ◽  
Marta Sofía Valero ◽  
César Berzosa ◽  
...  

Nematicidal activity ofMelaleuca alternifoliaessential oil, commonly known as tea tree oil (TTO), was assayedin vitroagainst L3 larvae ofAnisakis simplex. The results showed a mortality of 100% for concentrations between 7 and 10 μL/mL after 48 h of incubation, obtaining an LD50 value of 4.53 μL/mL after 24 hours and 4.27 μL/mL after 48 hours. Concentration-dependent inhibition of acetylcholinesterase was observed for tea tree essential oil showing inhibition values of 100% at 100 μL/mL. This fact suggests that TTO may act as an AChE inhibitor. Terpinen-4-ol was discarded as main larvicide compound as it did not show larvicidal or anticholinesterase activity. The data obtained suggest that the essential oil ofMelaleuca alternifoliamay have a great therapeutic potential for the treatment of human anisakiasis.


2011 ◽  
Vol 13 (4) ◽  
pp. 492-499 ◽  
Author(s):  
A.C.M. Oliveira ◽  
A. Fontana ◽  
T.C. Negrini ◽  
M.N.M. Nogueira ◽  
T.B.L. Bedran ◽  
...  

O interesse por medicamentos alternativos, principalmente daqueles provenientes de extratos naturais, tem aumentado nas últimas décadas. A Melaleuca alternifolia é um arbusto pertencente ao gênero Melaleuca, popularmente conhecida como "árvore de chá", cujo principal produto é o óleo essencial (TTO - tea tree oil), de grande importância medicinal por possuir comprovada ação bactericida e antifúngica contra diversos patógenos humanos. Em virtude da atividade terapêutica em diversas especialidades médicas, o TTO passou a ser empregado na área odontológica. Esta revisão de literatura foi realizada com o objetivo de discutir os ensaios já realizados com o TTO contra microrganismos relacionados à doença cárie, doença periodontal e problemas pulpares. O óleo de Melaleuca tem demonstrado boa ação antibacteriana in vitro contra microrganismos bucais, porém, pesquisas envolvendo o estudo do mecanismo de ação sobre as células microbianas ou estudos in vivo ainda são escassos e precisam ser realizados, já que esse produto pode ser útil na odontologia, seja na manutenção química da higiene ou prevenção de doenças bucais.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Tamirat Bekele Beressa ◽  
Serawit Deyno ◽  
Paul E. Alele

Background. Echinops kebericho is an endemic medicinal plant in Ethiopia widely used in the treatment of infectious and noninfectious diseases. Essential oils are known for their antibacterial, antifungal, antiviral, insecticidal, and antioxidant properties. This study evaluated the antifungal activity of essential oil from E. kebericho against four common pathogenic fungi and two standard strains. Methods. The essential oil was obtained by hydrodistillation. The antifungal screening was done by agar well diffusion method. Minimal inhibitory concentrations (MICs) were determined by broth microdilution. Minimal fungicidal concentrations (MFCs) were determined by subculturing fungal strains with no visible growth onto a Sabouraud dextrose agar (SDA) plate. Results. Candida albicans and Cryptococcus neoformans were highly sensitive while Aspergillus flavus did not show sensitivity up to 1 mg/ml of essential oil; MICs ranged from 0.083 mg/ml to 0.208 mg/ml. Concentration and fungal species showed significant dose-dependent associations ( p < 0.0001 ) with antifungal activity. The MICs of essential oil were comparable to those of the standard drug (fluconazole) against C. glabrata and C. krusei. The lowest MFC of the essential oil was observed against Candida parapsilosis (0.145 mg/ml) while the highest MFC was against Candida krusei (0.667 mg/ml). Conclusion. Echinops kebericho essential oil showed noteworthy antifungal activity against Cryptococcus neoformans, Candida albicans, and Candida glabrata and could be a potential candidate for further antifungal drug development.


2018 ◽  
Vol 13 (9) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Daniele Fraternale ◽  
Donata Ricci

The present study reports the results of gas chromatography-mass spectrometry (GC/MS) analyses of the essential oil from flowering aerial parts of Cotinus coggygria Scoop. (Anacardiaceae), as well as its in vitro antifungal activity against nine plant pathogenic fungi. Moreover, the essential oil was evaluated for its antifungal activity using the agar dilution method, and also MICs (minimum inhibitory concentrations) and MFCs (minimum fungicidal concentrations) were determined. The major compounds identified by GC-MS were limonene (49.2%), (Z)-β-ocimene (13.6%), α-pinene (8.8%) and (E)-β-ocimene (5.9%). The oil showed in vitro antifungal activity against some species of the Fusarium genus, Botrytis cinerea, and Alternaria solani. Our study indicates that the oil of C. coggygria could be used as a control agent for plant pathogenic fungi in natural formulations.


Sign in / Sign up

Export Citation Format

Share Document