Gamma-Glutamyl-Amino Acids as Signals for the Hormonal Regulation of Amino Acid Uptake by the Mammary Gland of the Lactating Rat

Neonatology ◽  
1985 ◽  
Vol 48 (4) ◽  
pp. 250-256 ◽  
Author(s):  
Juan R. Viña ◽  
Inmaculada R. Puertes ◽  
Juan B. Montoro ◽  
Guillermo T. Saez ◽  
José Viña
1981 ◽  
Vol 200 (3) ◽  
pp. 705-708 ◽  
Author(s):  
J R Viña ◽  
I R Puertes ◽  
J Viña

1. Arteriovenous differences of amino acids across the lactating mammary gland were measured in normal rats and weaned for 4, 5 and 24h. 2. Uptake of amino acids by mammary glands of rats weaned for 5h or more was significantly lower than that of controls. This was not reversed by injection of prolactin. 3. By using ‘unilaterally weaned’ rats we showed that milk accumulation plays an important role in amino acid uptake by mammary gland. 4. gamma-Glutamyltransferase activity was significantly lower in ‘weaned’ glands than in ‘normal’ glands. This provides further support for the hypothesis of the function of the gamma-glutamyl cycle in the mammary gland in vivo.


1979 ◽  
Vol 46 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Andrew R. Peters ◽  
Stephen Alexandrov ◽  
T. Ben Mepham

SUMMARYThe effects of high rates of infusion of essential amino acids on amino acid uptake by the isolated perfused guinea-pig mammary gland were studied. Infusion of methionine, tyrosine, phenylalanine, histidine and tryptophan (designated group 1) resulted in significant increases in the uptakes of tyrosine, phenylalanine and histidine. Methionine, tryptophan and other essential amino acids were not significantly affected. Infusion of threonine, valine, isoleucine, leucine, lysine and arginine (designated group 2) resulted in significant increases in uptake of all these amino acids. Group 1 amino acid uptake was not significantly affected. Infusion of all the essential amino acids (i.e. groups 1 and 2 together) resulted in significant increases in all their uptakes. Using as index ‘the predicted rate of protein synthesis’, infusion of group 1 and 2 together led to an apparent 27% increase in protein synthesis. The above results are discussed in relation to the control of milk protein synthesis by limiting essential amino acids.


1986 ◽  
Vol 14 (2) ◽  
pp. 311-312 ◽  
Author(s):  
JUAN R. VIÑA ◽  
INMACULADA R. PUERTES ◽  
JUAN B. MONTORO ◽  
ARGIMIRO RODRIGUEZ ◽  
JOSÉ VIÑA

1981 ◽  
Vol 194 (1) ◽  
pp. 99-102 ◽  
Author(s):  
J Viña ◽  
I R Puertes ◽  
J M Estrela ◽  
J R Viña ◽  
J L Galbis

1. Arteriovenous differences of amino acids across the lactating mammary gland have been measured in normal rats and in rats injected with serine–borate (an inhibitor of gamma-glutamyltransferase). 2. Comparison of the arteriovenous differences show that gamma-glutamyltransferase is involved in amino-acid uptake by the gland. 3. Reduced-glutathione content of isolated acini incubated with high concentrations of amino acids was lower than that of the controls. 4. High concentrations of amino acids had no effect on reduced-glutathione content of isolated acini when serine–borate was added to the incubation medium. 5. The findings provide evidence for the functioning of the gamma-glutamyl cycle in the lactating mammary gland in vivo.


1983 ◽  
Vol 216 (2) ◽  
pp. 343-347 ◽  
Author(s):  
J R Viña ◽  
I R Puertes ◽  
J B Montoro ◽  
J Viña

Arteriovenous differences of amino acids across the mammary glands of lactating rats are diminished when the rats are starved for 24 h. When 24 h-starved rats were refed for 2 1/2 h, the arteriovenous differences of amino acids returned to values similar to those found in well-fed rats. In order to find a possible explanation for these rapid changes, we tested the effect of ketone bodies on amino acid uptake by the gland. At 5 min after injection of acetoacetate to fed rats, when the total concentration of ketone bodies in blood was similar to that found in starvation, the uptake of amino acids by the mammary gland was similar to that found after starvation, i.e. lower than in fed rats. However, 30 min after administration of acetoacetate, when the arterial concentration of ketone bodies had returned to values similar to those in fed rats, the arteriovenous differences of amino acids were similar to those found in fed rats. We conclude that the changes in blood ketone bodies may be responsible, at least in part, for the changes in amino acid uptake that occur in starvation and in the starvation—refeeding transition.


1976 ◽  
Vol 73 (4) ◽  
pp. 997-1002 ◽  
Author(s):  
Francoise Pellefigue ◽  
Jean DeBrohun Butler ◽  
Stephen P. Spielberg ◽  
Morley D. Hollenberg ◽  
Stephen I. Goodman ◽  
...  

1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


1967 ◽  
Vol 168 (1013) ◽  
pp. 421-438 ◽  

The uptake of thirteen essential amino acids by mouse LS cells in suspension culture was determined by bacteriological assay methods. Chemostat continuous-flow cultures were used to determine the effect of different cell growth rates on the quantitative amino acid requirements for growth. The growth yields of the cells ( Y = g cell dry weight produced/g amino acid utilized) were calculated for each of the essential amino acids. A mixture of the non-essential amino acids, serine, alanine and glycine increased the cell yield from the essential amino acids. The growth yields from nearly all the essential amino acids in batch culture were increased when glutamic acid was substituted for the glutamine in the medium. The growth yields from the amino acids in batch culture were much less at the beginning than at the end of the culture. The highest efficiencies of conversion of amino acids to cell material were obtained by chemostat culture. When glutamic acid largely replaced the glutamine in the medium the conversion of amino acid nitrogen to cell nitrogen was 100 % efficient (that is, the theoretical yield was obtained) at the optimum growth rate (cell doubling time, 43 h). The maximum population density a given amino acid mixture will support can be calculated from the data. It is concluded that in several routinely used tissue culture media the cell growth is limited by the amino acid supply. In batch culture glutamine was wasted by (1) its spontaneous decomposition to pyrrolidone carboxylic acid and ammonia, and (2) its enzymic breakdown to glutamic acid and ammonia, but also glutamine was used less efficiently than glutamic acid. Study of the influence of cell growth rate on amino acid uptake rates per unit mass of cells indicated that a marked change in amino acid metabolism occurred at a specific growth rate of 0.4 day -1 (cell doubling time, 43 h). With decrease in specific growth rate below 0.4 day -1 there was a marked stimulation of amino acid uptake rate per cell and essential amino acids were consumed increasingly for functions other than synthesis of cell material.


1971 ◽  
Vol 125 (2) ◽  
pp. 515-520 ◽  
Author(s):  
P. J. Reeds ◽  
K. A. Munday ◽  
M. R. Turner

The separate effects of insulin and growth hormone on the uptake and incorporation of five amino acids into diaphragm muscle from non-hypophysectomized rabbits has been examined. Both growth hormone and insulin, when present in the medium separately, stimulated the incorporation into protein of the amino acids, leucine, arginine, valine, lysine and histidine. Insulin also stimulated amino acid uptake, but growth hormone did not. When insulin and growth hormone were present in the incubation medium together, the uptake and incorporation of valine, the only amino acid studied under these conditions, tended to be greater than the sum of the separate effects of the two hormones.


Sign in / Sign up

Export Citation Format

Share Document