scholarly journals Panax Notoginseng Saponins Promote Osteogenic Differentiation of Bone Marrow Stromal Cells Through the ERK and P38 MAPK Signaling Pathways

2011 ◽  
Vol 28 (2) ◽  
pp. 367-376 ◽  
Author(s):  
Xue-dong Li ◽  
Zhao-yong Liu ◽  
Bo Chang ◽  
Dong-xin Liu ◽  
Bin Chen ◽  
...  
2018 ◽  
Vol 6 (2) ◽  
pp. 418-430 ◽  
Author(s):  
Xinran Zhang ◽  
Haotian Li ◽  
Chucheng Lin ◽  
Congqin Ning ◽  
Kaili Lin

Ordered micro-patterned topography and Sr ion doping in HAp synergistically enhance osteogenesis through ERK1/2 and p38 MAPK signaling pathways.


2018 ◽  
Vol 47 (1) ◽  
pp. 161-175 ◽  
Author(s):  
Fei-xiang Lin ◽  
Gui-zhou Zheng ◽  
Bo Chang ◽  
Rong-chun Chen ◽  
Qi-hao Zhang ◽  
...  

Background/Aims: Bone marrow stromal cells (BMSCs) are multipotent precursors that give rise to osteoblasts, and contribute directly to bone formation. Connexin 43 (Cx43) is the most ubiquitous gap junction protein expressed in bone cell types, and plays crucial roles in regulating intercellular signal transmission for bone development, differentiation and pathology. However, the precise role and mechanism of Cx43 in BMSCs are less known. Here, we investigate the function of Cx43 in osteogenic differentiation of BMSCs in vitro. Methods: BMSCs were isolated by whole bone marrow adherent culture. Knock down of Cx43 was performed by using lentiviral transduction of Cx43 shRNA. BMSCs were induced to differentiate by culturing in a-MEM, 10% FBS, 50 µM ascorbic acid, 10 mM beta-glycerophosphate, and 100 nM dexamethasone. Alkaline phosphatase (ALP) activity and alizarin red S staining were used to evaluate osteogenic differentiation in calcium nodules. Target mRNAs and proteins were analyzed by using real-time quantitative PCR (qPCR) and western blotting. Results: Cx43 expression markedly increased during osteogenic differentiation. Osteogenic differentiation was suppressed following lentiviral-mediated knockdown of Cx43 expression, as judged by decreased levels of Runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP), osteocalcin (Bglap), Osterix (Osx), alkaline phosphatase (ALP) activity and the number of calcium nodules in response to osteogenic differentiation stimuli. Knock down of Cx43 reduced the level of phosphorylation of GSK-3beta at Ser9 (p-GSK-3beta), resulting in decreased beta-catenin expression and activation. Furthermore, treatment of Cx43-knockdown cells with lithium chloride (LiCl), a GSK-3beta inhibitor, reduced osteogenic differentiation and decreased GSK-3beta levels, as well as partially rescued levels of both total and activated beta-catenin. Conclusion: These findings indicate that Cx43 positively modulates osteogenic differentiation of BMSCs by up-regulating GSK-3beta/beta-catenin signaling pathways, suggesting a potential role for Cx43 in determining bone mass and bone mineral density by modulating osteogenesis.


2006 ◽  
Vol 26 (10) ◽  
pp. 719-729 ◽  
Author(s):  
Carlos Rossa ◽  
Kathryn Ehmann ◽  
Min Liu ◽  
Chetan Patil ◽  
Keith L. Kirkwood

Author(s):  
Daqian Wan ◽  
Songtao Ai ◽  
Huoniu Ouyang ◽  
Liming Cheng

AbstractSenile osteoporosis can cause bone fragility and increased fracture risks and has been one of the most prevalent and severe diseases affecting the elderly population. Bone formation depends on the proper osteogenic differentiation of bone marrow stromal cells (BMSCs) in the bone marrow microenvironment, which is generated by the functional relationship among different cell types in the bone marrow. With aging, bone marrow provides signals that repress osteogenesis. Finding the signals that oppose BMSC osteogenic differentiation from the bone marrow microenvironment and identifying the abnormal changes in BMSCs with aging are key to elucidating the mechanisms of senile osteoporosis. In a pilot experiment, we found that 4-1BBL and 4-1BB were more abundant in bone marrow from aged (18-month-old) mice than young (6-month-old) mice. Meanwhile, significant bone loss was observed in aged mice compared with young mice. However, very little data have been generated regarding whether high-level 4-1BB/4-1BBL in bone marrow was associated with bone loss in aged mice. In the current study, we found upregulation of 4-1BB in the BMSCs of aged mice, which resulted in the attenuation of the osteogenic differentiation potential of BMSCs from aged mice via the p38 MAPK-Dkk1 pathway. More importantly, bone loss of aged mice could be rescued through the blockade of 4-1BB signaling in vivo. Our study will benefit not only our understanding of the pathogenesis of age-related trabecular bone loss but also the search for new targets to treat senile osteoporosis.


Cytokine ◽  
2000 ◽  
Vol 12 (11) ◽  
pp. 1630-1638 ◽  
Author(s):  
Reinhard Gruber ◽  
Christian Mayer ◽  
Waltraud Schulz ◽  
Winfried Graninger ◽  
Meinrad Peterlik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document