Neuroanatomical and Morphological Trait Clusters in the Ant Genus Pheidole: Evidence for Modularity and Integration in Brain Structure

2015 ◽  
Vol 85 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Iulian Ilieş ◽  
Mario L. Muscedere ◽  
James F.A. Traniello

A central question in brain evolution concerns how selection has structured neuromorphological variation to generate adaptive behavior. In social insects, brain structures differ between reproductive and sterile castes, and worker behavioral specializations related to morphology, age, and ecology are associated with intra- and interspecific variation in investment in functionally different brain compartments. Workers in the hyperdiverse ant genus Pheidole are morphologically and behaviorally differentiated into minor and major subcastes that exhibit distinct species-typical patterns of brain compartment size variation. We examined integration and modularity in brain organization and its developmental patterning in three ecotypical Pheidole species by analyzing intra- and interspecific morphological and neuroanatomical covariation. Our results identified two trait clusters, the first involving olfaction and social information processing and the second composed of brain regions regulating nonolfactory sensorimotor functions. Patterns of size covariation between brain compartments within subcastes were consistent with levels of behavioral differentiation between minor and major workers. Globally, brains of mature workers were more heterogeneous than brains of newly eclosed workers, suggesting diversified developmental trajectories underscore species- and subcaste-typical brain organization. Variation in brain structure associated with the striking worker polyphenism in our sample of Pheidole appears to originate from initially differentiated brain templates that further diverge through species- and subcaste-specific processes of maturation and behavioral development.

2020 ◽  
Author(s):  
Xin Niu ◽  
Alexei Taylor ◽  
Russell T. Shinohara ◽  
John Kounios ◽  
Fengqing Zhang

AbstractBrain regions change in different ways and at different rates. This staggered developmental unfolding is determined by genetics and postnatal experience and is implicated in the progression of psychiatric and neurological disorders. Neuroimaging-based brain-age prediction has emerged as an important new approach for studying brain development. However, the unidimensional brain-age estimates provided by previous methods do not capture the divergent developmental trajectories of various brain structures. Here we propose and illustrate an analytic pipeline to compute an index of multidimensional brain-age that provides regional age predictions. First, using a database of 556 subjects that includes psychiatric and neurological patients as well as healthy controls we conducted robust regression to characterize the developmental trajectory of each MRI-based brain-imaging feature. We then utilized cluster analysis to identify subgroups of imaging features with a similar developmental trajectory. For each identified cluster, we obtained a brain-age prediction by applying machine-learning models with imaging features belonging to each cluster. Brain-age predictions from multiple clusters form a multidimensional brain-age index (MBAI). The MBAI is more sensitive to alterations in brain structures and captured distinct regional change patterns. In particular, the MBAI provided a more flexible analysis of brain age across brain regions that revealed changes in specific structures in psychiatric disorders that would otherwise have been combined in a unidimensional brain age prediction. More generally, brain-age prediction using a subset of homogeneous features circumvents the curse of dimensionality in neuroimaging data.


2019 ◽  
Vol 286 (1911) ◽  
pp. 20191608 ◽  
Author(s):  
Lauren E. Powell ◽  
Robert A. Barton ◽  
Sally E. Street

Life history is a robust correlate of relative brain size: larger-brained mammals and birds have slower life histories and longer lifespans than smaller-brained species. The cognitive buffer hypothesis (CBH) proposes an adaptive explanation for this relationship: large brains may permit greater behavioural flexibility and thereby buffer the animal from unpredictable environmental challenges, allowing for reduced mortality and increased lifespan. By contrast, the developmental costs hypothesis (DCH) suggests that life-history correlates of brain size reflect the extension of maturational processes needed to accommodate the evolution of large brains, predicting correlations with pre-adult life-history phases. Here, we test novel predictions of the hypotheses in primates applied to the neocortex and cerebellum, two major brain structures with distinct developmental trajectories. While neocortical growth is allocated primarily to pre-natal development, the cerebellum exhibits relatively substantial post-natal growth. Consistent with the DCH, neocortical expansion is related primarily to extended gestation while cerebellar expansion to extended post-natal development, particularly the juvenile period. Contrary to the CBH, adult lifespan explains relatively little variance in the whole brain or neocortex volume once pre-adult life-history phases are accounted for. Only the cerebellum shows a relationship with lifespan after accounting for developmental periods. Our results substantiate and elaborate on the role of maternal investment and offspring development in brain evolution, suggest that brain components can evolve partly independently through modifications of distinct developmental phases, and imply that environmental input during post-natal maturation may be particularly crucial for the development of cerebellar function. They also suggest that relatively extended post-natal maturation times provide a developmental mechanism for the marked expansion of the cerebellum in the apes.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 886
Author(s):  
Silvana Piersanti ◽  
Manuela Rebora ◽  
Gianandrea Salerno ◽  
Sylvia Anton

Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.


2020 ◽  
Author(s):  
Daniel Brennan ◽  
Tingting Wu ◽  
Jin Fan

AbstractMany major neuropsychiatric pathologies, some of which appear in adolescence, show differentiated prevalence, onset, and symptomatology across the biological sexes. Therefore, mapping differences in brain structure between males and females during this critical developmental period may provide information about the neural mechanisms underlying the dimorphism of these pathologies. Utilizing a large dataset collected through the Adolescent Brain Cognitive Development study, we investigated the differences of adolescent (9-10 years old) male and female brains (n = 8325) by using a linear Support-Vector Machine Classifier to predict sex based on morphometry and image intensity values of structural brain imaging data. The classifier correctly classified the sex of 86% individuals with the insula, the precentral and postcentral gyri, and the pericallosal sulcus as the most discernable features. The role of these significant dimorphic features in psychopathology was explored by testing them as mediators between sex and clinical symptomology. The results demonstrate the existence of morphometrical brain markers of sex difference.Significance StatementMany psychiatric pathologies express differently across the sexes. Therefore, an understanding of the differences in brain structure between males and females during the critical developmental period of adolescence may provide the insights about the dimorphism of clinical symptomology and the general functions of the dimorphic brain structures. Using machine learning, we successfully classified males and females with a high accuracy based on morphometry and image intensity data extracted from structural MRI scans. The features which significantly contributed to classification were examined to determine brain regions which are dimorphic during adolescence. The relevance of these brain regions to the expression of psychopathology symptoms was also explored.


Science ◽  
2018 ◽  
Vol 360 (6394) ◽  
pp. 1222-1227 ◽  
Author(s):  
P. K. Reardon ◽  
Jakob Seidlitz ◽  
Simon Vandekar ◽  
Siyuan Liu ◽  
Raihaan Patel ◽  
...  

Brain size variation over primate evolution and human development is associated with shifts in the proportions of different brain regions. Individual brain size can vary almost twofold among typically developing humans, but the consequences of this for brain organization remain poorly understood. Using in vivo neuroimaging data from more than 3000 individuals, we find that larger human brains show greater areal expansion in distributed frontoparietal cortical networks and related subcortical regions than in limbic, sensory, and motor systems. This areal redistribution recapitulates cortical remodeling across evolution, manifests by early childhood in humans, and is linked to multiple markers of heightened metabolic cost and neuronal connectivity. Thus, human brain shape is systematically coupled to naturally occurring variations in brain size through a scaling map that integrates spatiotemporally diverse aspects of neurobiology.


2019 ◽  
Vol 93 (1) ◽  
pp. 4-18 ◽  
Author(s):  
J. Frances Kamhi ◽  
Iulian Ilieş ◽  
James F.A. Traniello

The behavioral demands of living in social groups have been linked to the evolution of brain size and structure, but how social organization shapes investment and connectivity within and among functionally specialized brain regions remains unclear. To understand the influence of sociality on brain evolution in ants, a premier clade of eusocial insects, we statistically analyzed patterns of brain region size covariation as a proxy for brain region connectivity. We investigated brain structure covariance in young and old workers of two formicine ants, the Australasian weaver ant Oecophylla smaragdina, a pinnacle of social complexity in insects, and its socially basic sister clade Formica subsericea. As previously identified in other ant species, we predicted that our analysis would recognize in both species an olfaction-related brain module underpinning social information processing in the brain, and a second neuroanatomical cluster involved in nonolfactory sensorimotor processes, thus reflecting conservation of compartmental connectivity. Furthermore, we hypothesized that covariance patterns would reflect divergence in social organization and life histories either within this species pair or compared to other ant species. Contrary to our predictions, our covariance analyses revealed a weakly defined visual, rather than olfactory, sensory processing cluster in both species. This pattern may be linked to the reliance on vision for worker behavioral performance outside of the nest and the correlated expansion of the optic lobes to meet navigational demands in both species. Additionally, we found that colony size and social organization, key measures of social complexity, were only weakly correlated with brain modularity in these formicine ants. Worker age also contributed to variance in brain organization, though in different ways in each species. These findings suggest that brain organization may be shaped by the divergent life histories of the two study species. We compare our findings with patterns of brain organization of other eusocial insects.


2016 ◽  
Vol 87 (2) ◽  
pp. 69-77 ◽  
Author(s):  
Ferran Sayol ◽  
Louis Lefebvre ◽  
Daniel Sol

Despite growing interest in the evolution of enlarged brains, the biological significance of brain size variation remains controversial. Much of the controversy is over the extent to which brain structures have evolved independently of each other (mosaic evolution) or in a coordinated way (concerted evolution). If larger brains have evolved by the increase of different brain regions in different species, it follows that comparisons of the whole brain might be biologically meaningless. Such an argument has been used to criticize comparative attempts to explain the existing variation in whole-brain size among species. Here, we show that pallium areas associated with domain-general cognition represent a large fraction of the entire brain, are disproportionally larger in large-brained birds and accurately predict variation in the whole brain when allometric effects are appropriately accounted for. While this does not question the importance of mosaic evolution, it suggests that examining specialized, small areas of the brain is not very helpful for understanding why some birds have evolved such large brains. Instead, the size of the whole brain reflects consistent variation in associative pallium areas and hence is functionally meaningful for comparative analyses.


2001 ◽  
Vol 24 (2) ◽  
pp. 263-278 ◽  
Author(s):  
Barbara L. Finlay ◽  
Richard B. Darlington ◽  
Nicholas Nicastro

How does evolution grow bigger brains? It has been widely assumed that growth of individual structures and functional systems in response to niche-specific cognitive challenges is the most plausible mechanism for brain expansion in mammals. Comparison of multiple regressions on allometric data for 131 mammalian species, however, suggests that for 9 of 11 brain structures taxonomic and body size factors are less important than covariance of these major structures with each other. Which structure grows biggest is largely predicted by a conserved order of neurogenesis that can be derived from the basic axial structure of the developing brain. This conserved order of neurogenesis predicts the relative scaling not only of gross brain regions like the isocortex or mesencephalon, but also the level of detail of individual thalamic nuclei. Special selection of particular areas for specific functions does occur, but it is a minor factor compared to the large-scale covariance of the whole brain. The idea that enlarged isocortex could be a “spandrel,” a by-product of structural constraints later adapted for various behaviors, contrasts with approaches to selection of particular brain regions for cognitively advanced uses, as is commonly assumed in the case of hominid brain evolution.


2006 ◽  
Vol 29 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Georg F. Striedter

Brain evolution is a complex weave of species similarities and differences, bound by diverse rules and principles. This book is a detailed examination of these principles, using data from a wide array of vertebrates but minimizing technical details and terminology. It is written for advanced undergraduates, graduate students, and more senior scientists who already know something about “the brain,” but want a deeper understanding of how diverse brains evolved. The book's central theme is that evolutionary changes in absolute brain size tend to correlate with many other aspects of brain structure and function, including the proportional size of individual brain regions, their complexity, and their neuronal connections. To explain these correlations, the book delves into rules of brain development and asks how changes in brain structure impact function and behavior. Two chapters focus specifically on how mammal brains diverged from other brains and how Homo sapiens evolved a very large and “special” brain.


2019 ◽  
Vol 6 (3) ◽  
pp. 153-163
Author(s):  
Jesús Fernando Pérez Lorenzo

ABSTRACTPerhaps since the time of Darwin scientists have tried to clarify the meaning of violence from an evolutionary configuration (Lorenz, 1967). Currently neurologists begin to extract the different brain processes that unleash the various violent behaviors. Current brain scanning techniques identify brain regions involved in the ordering of emotions and reactions. Professor Richard Davidson notes that not all individuals are capable of facing aggression and anger equally, so that the brain structure of some people induces violence (Goleman, 2008). Anyway this should not be understood as being born violent, but a series of elements in hodgepodge of genetic and social nature is forging a brain organization that trains in more or less hierarchy the different aggressive and violent exaltations (Iglesias, 2000).RESUMENQuizás desde los tiempos de Darwin los científicos han tratado de aclarar el significado de la violencia desde una configuración evolutiva (Lorenz, 1967). Actualmente los neurólogos empiezan a extraer los distintos procesos cerebrales que desatan las diversas conductas violentas. Las actuales técnicas de exploración cerebral identifican regiones cerebrales implicadas en la ordenación de las emociones y reacciones. El profesor Richard Davidson recoge que no todas los individuos son capaces de afrontar por igual la agresividad y la furia, por lo que la estructura cerebral de algunas personas le induce a la violencia (Goleman, 2008). De cualquier forma esto no debe ser entendido como que se nace violento, sino que una serie de elementos en mezcolanza de índole genética y social va fraguando una organización cerebral que capacita en más o menos jerarquía las distintas exaltaciones agresivas y violentas (Iglesias, 2000).


Sign in / Sign up

Export Citation Format

Share Document