scholarly journals The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 886
Author(s):  
Silvana Piersanti ◽  
Manuela Rebora ◽  
Gianandrea Salerno ◽  
Sylvia Anton

Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.

Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


2021 ◽  
pp. 153537022110568
Author(s):  
Natalia V Bobkova ◽  
Daria Y Zhdanova ◽  
Natalia V Belosludtseva ◽  
Nikita V Penkov ◽  
Galina D Mironova

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


Author(s):  
J. Eric Ahlskog

As a prelude to the treatment chapters that follow, we need to define and describe the types of problems and symptoms encountered in DLB and PDD. The clinical picture can be quite varied: problems encountered by one person may be quite different from those encountered by another person, and symptoms that are problematic in one individual may be minimal in another. In these disorders, the Lewy neurodegenerative process potentially affects certain nervous system regions but spares others. Affected areas include thinking and memory circuits, as well as movement (motor) function and the autonomic nervous system, which regulates primary functions such as bladder, bowel, and blood pressure control. Many other brain regions, by contrast, are spared or minimally involved, such as vision and sensation. The brain and spinal cord constitute the central nervous system. The interface between the brain and spinal cord is by way of the brain stem, as shown in Figure 4.1. Thought, memory, and reasoning are primarily organized in the thick layers of cortex overlying lower brain levels. Volitional movements, such as writing, throwing, or kicking, also emanate from the cortex and integrate with circuits just below, including those in the basal ganglia, shown in Figure 4.2. The basal ganglia includes the striatum, globus pallidus, subthalamic nucleus, and substantia nigra, as illustrated in Figure 4.2. Movement information is integrated and modulated in these basal ganglia nuclei and then transmitted down the brain stem to the spinal cord. At spinal cord levels the correct sequence of muscle activation that has been programmed is accomplished. Activated nerves from appropriate regions of the spinal cord relay the signals to the proper muscles. Sensory information from the periphery (limbs) travels in the opposite direction. How are these signals transmitted? Brain cells called neurons have long, wire-like extensions that interface with other neurons, effectively making up circuits that are slightly similar to computer circuits; this is illustrated in Figure 4.3. At the end of these wire-like extensions are tiny enlargements (terminals) that contain specific biological chemicals called neurotransmitters. Neurotransmitters are released when the electrical signal travels down that neuron to the end of that wire-like process.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1721 ◽  
Author(s):  
Cezary Grochowski ◽  
Eliza Blicharska ◽  
Jacek Bogucki ◽  
Jędrzej Proch ◽  
Aleksandra Mierzwińska ◽  
...  

Introduction: Alcohol overuse may be related to increased aluminum (Al) exposure, the brain accumulation of which contributes to dementia. However, some reports indicate that silicon (Si) may have a protective role over Al-induced toxicity. Still, no study has ever explored the brain content of Al and Si in alcoholic use disorder (AUD). Materials and methods: To fill this gap, the present study employed inductively coupled plasma optical emission spectrometry to investigate levels of Al and Si in 10 brain regions and in the liver of AUD patients (n = 31) and control (n = 32) post-mortem. Results: Al content was detected only in AUD patients at mean ± SD total brain content of 1.59 ± 1.19 mg/kg, with the highest levels in the thalamus (4.05 ± 12.7 mg/kg, FTH), inferior longitudinal fasciculus (3.48 ± 9.67 mg/kg, ILF), insula (2.41 ± 4.10 mg/kg) and superior longitudinal fasciculus (1.08 ± 2.30 mg/kg). Si content displayed no difference between AUD and control, except for FTH. Positive inter-region correlations between the content of both elements were identified in the cingulate cortex, hippocampus, and ILF. Conclusions: The findings of this study suggest that AUD patients may potentially be prone to Al-induced neurodegeneration in their brain—although this hypothesis requires further exploration.


2018 ◽  
Vol 29 (8) ◽  
pp. 3380-3389
Author(s):  
Timothy J Andrews ◽  
Ryan K Smith ◽  
Richard L Hoggart ◽  
Philip I N Ulrich ◽  
Andre D Gouws

Abstract Individuals from different social groups interpret the world in different ways. This study explores the neural basis of these group differences using a paradigm that simulates natural viewing conditions. Our aim was to determine if group differences could be found in sensory regions involved in the perception of the world or were evident in higher-level regions that are important for the interpretation of sensory information. We measured brain responses from 2 groups of football supporters, while they watched a video of matches between their teams. The time-course of response was then compared between individuals supporting the same (within-group) or the different (between-group) team. We found high intersubject correlations in low-level and high-level regions of the visual brain. However, these regions of the brain did not show any group differences. Regions that showed higher correlations for individuals from the same group were found in a network of frontal and subcortical brain regions. The interplay between these regions suggests a range of cognitive processes from motor control to social cognition and reward are important in the establishment of social groups. These results suggest that group differences are primarily reflected in regions involved in the evaluation and interpretation of the sensory input.


1996 ◽  
Vol 37 (3P2) ◽  
pp. 578-581 ◽  
Author(s):  
A. La Noce ◽  
P. Lorenzon ◽  
F. Pugliese ◽  
G. Pellecchi ◽  
I. Orlandini ◽  
...  

Purpose: Iomeprol, a new nonionic iodinated compound for intravascular use, is being evaluated as a myelographic contrast agent because of its low neurotoxicity. This study aimed to assess the degree of brain penetration of iomeprol after intrathecal administration. Material and Methods: Brain penetration in dogs was investigated by CT and compared with that of iopamidol, iohexol, and ioversol, currently used as myelographic contrast media (CM). Nervous tissue density was determined in different brain structures by recording Hounsfield values. Results: The experiments revealed that CM diffused from the cisternae into the parenchyma, reaching a maximum at 5–24 h after injection. The density of the examined brain regions was still higher than the preinjection levels 24 h later. No differences in brain penetration were observed among the CM investigated. Conclusion: The study has shown that iomeprol penetrates into the brain to the same extent as the most widely used myelographic CM.


2017 ◽  
Author(s):  
Olivia K Faull ◽  
Anja Hayen ◽  
Kyle T S Pattinson

AbstractBreathlessness debilitates millions of people with chronic illness. Mismatch between breathlessness severity and objective disease markers is common and poorly understood. Traditionally, sensory perception was conceptualised as a stimulus-response relationship, although this cannot explain how conditioned symptoms may occur in the absence of physiological signals from the lungs or airways. A Bayesian model is now proposed in which the brain generates sensations based on expectations learned from past experiences (priors), which are then checked against incoming afferent signals. In this model, psychological factors may act as moderators. They may either alter priors, or change the relative attention towards incoming sensory information, leading to more variable interpretation of an equivalent afferent input.In the present study we conducted a preliminary test of this model in a supplementary analysis of previously published data (Hayen 2017). We hypothesised that individual differences in psychological traits (anxiety, depression, anxiety sensitivity) would correlate with the variability of subjective evaluation of equivalent breathlessness challenges. To better understand the resulting inferential leap in the brain, we explored whether these behavioural measures correlated with activity in areas governing either prior generation or sensory afferent input.Behaviorally, anxiety sensitivity was found to positively correlate with each subject’s variability of intensity and unpleasantness during mild breathlessness, and with unpleasantness during strong breathlessness. In the brain, anxiety sensitivity was found to positively correlate with activity in the anterior insula during mild breathlessness, and negatively correlate with parietal sensorimotor areas during strong breathlessness.Our findings suggest that anxiety sensitivity may reduce the robustness of this Bayesian sensory perception system, increasing the variability of breathlessness perception and possibly susceptibility to symptom misinterpretation. These preliminary findings in healthy individuals demonstrate how differences in psychological function influence the way we experience bodily sensations, which might direct us towards better understanding of symptom mismatch in clinical populations.


2019 ◽  
Author(s):  
Amol P. Yadav ◽  
Daniel Li ◽  
Miguel A. L. Nicolelis

AbstractLack of sensory feedback is a major obstacle in the rapid absorption of prosthetic devices by the brain. While electrical stimulation of cortical and subcortical structures provides unique means to deliver sensory information to higher brain structures, these approaches require highly invasive surgery and are dependent on accurate targeting of brain structures. Here, we propose a semi-invasive method, Dorsal Column Stimulation (DCS) as a tool for transferring sensory information to the brain. Using this new approach, we show that rats can learn to discriminate artificial sensations generated by DCS and that DCS-induced learning results in corticostriatal plasticity. We also demonstrate a proof of concept brain-to-spine interface (BTSI), whereby tactile and artificial sensory information are decoded from the brain of an “encoder” rat, transformed into DCS pulses, and delivered to the spinal cord of a second “decoder” rat while the latter performs an analog-to-digital conversion during a tactile discrimination task. These results suggest that DCS can be used as an effective sensory channel to transmit prosthetic information to the brain or between brains, and could be developed as a novel platform for delivering tactile and proprioceptive feedback in clinical applications of brain-machine interfaces.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


2019 ◽  
Author(s):  
Kamal Shadi ◽  
Eva Dyer ◽  
Constantine Dovrolis

AbstractHaving a structural network representation of connectivity in the brain is instrumental in analyzing communication dynamics and information processing in the brain. In this work, we make steps towards understanding multi-sensory information flow and integration using a network diffusion approach. In particular, we model the flow of evoked activity, initiated by stimuli at primary sensory regions, using the Asynchronous Linear Threshold (ALT) diffusion model. The ALT model captures how evoked activity that originates at a given region of the cortex “ripples through” other brain regions (referred to as an activation cascade). By comparing the model results to functional datasets based on Voltage Sensitive Dye (VSD) imaging, we find that in most cases the ALT model predicts the temporal ordering of an activation cascade correctly. Our results on the Mouse Connectivity Atlas from the Allen Institute for Brain Science show that a small number of brain regions are involved in many primary sensory streams – the claustrum and the parietal temporal cortex being at the top of the list. This suggests that the cortex relies on an hourglass architecture to first integrate and compress multi-sensory information from multiple sensory regions, before utilizing that lower-dimensionality representation in higher-level association regions and more complex cognitive tasks.


Sign in / Sign up

Export Citation Format

Share Document