White Adipose Tissue Depot-Specific Activity of Lipogenic Enzymes in Response to Fasting and Refeeding in Young and Old Rats

Gerontology ◽  
2015 ◽  
Vol 61 (5) ◽  
pp. 448-455 ◽  
Author(s):  
Agata Wronska ◽  
Aleksandra Lawniczak ◽  
Piotr M. Wierzbicki ◽  
Elzbieta Goyke ◽  
Tomasz Sledzinski ◽  
...  
2020 ◽  
Vol 477 (8) ◽  
pp. 1373-1389
Author(s):  
Nusrat Hussain ◽  
Sheng-Ju Chuang ◽  
Manuel Johanns ◽  
Didier Vertommen ◽  
Gregory R. Steinberg ◽  
...  

We investigated acute effects of two allosteric protein kinase B (PKB) inhibitors, MK-2206 and Akti-1/2, on insulin-stimulated lipogenesis in rat epididymal adipocytes incubated with fructose as carbohydrate substrate. In parallel, the phosphorylation state of lipogenic enzymes in adipocytes and incubated epididymal fat pads was monitored by immunoblotting. Preincubation of rat epididymal adipocytes with PKB inhibitors dose-dependently inhibited the following: insulin-stimulated lipogenesis, increased PKB Ser473 phosphorylation, increased PKB activity and decreased acetyl-CoA carboxylase (ACC) Ser79 phosphorylation. In contrast, the effect of insulin to decrease the phosphorylation of pyruvate dehydrogenase (PDH) at Ser293 and Ser300 was not abolished by PKB inhibition. Insulin treatment also induced ATP-citrate lyase (ACL) Ser454 phosphorylation, but this effect was less sensitive to PKB inhibitors than ACC dephosphorylation by insulin. In incubated rat epididymal fat pads, Akti-1/2 treatment reversed insulin-induced ACC dephosphorylation, while ACL phosphorylation by insulin was maintained. ACL and ACC purified from white adipose tissue were poor substrates for PKBα in vitro. However, effects of wortmannin and torin, along with Akti-1/2 and MK-2206, on recognized PKB target phosphorylation by insulin were similar to their effects on insulin-induced ACL phosphorylation, suggesting that PKB could be the physiological kinase for ACL phosphorylation by insulin. In incubated epididymal fat pads from wild-type versus ACC1/2 S79A/S212A knockin mice, effects of insulin to increase lipogenesis from radioactive fructose or from radioactive acetate were reduced but not abolished. Together, the results support a key role for PKB in mediating insulin-stimulated lipogenesis by decreasing ACC phosphorylation, but not by decreasing PDH phosphorylation.


1970 ◽  
Vol 119 (4) ◽  
pp. 735-742 ◽  
Author(s):  
F. J. Ballard ◽  
R. W. Hanson ◽  
Lea Reshef

1. Pyruvate carboxylase (EC 6.4.1.1), purified from rat liver mitochondria to a specific activity of 14 units/mg, was used for the preparation of antibodies in rabbits. 2. Tissue distribution studies showed that pyruvate carboxylase was present in all rat tissues that were tested, with considerable activities both in gluconeogenic tissues such as liver and kidney and in tissues with high rates of lipogenesis such as white adipose tissue, brown adipose tissue, adrenal gland and lactating mammary gland. 3. Immunochemical titration experiments with the specific antibodies showed no differences between the inactivation of pyruvate carboxylase from mitochondrial or soluble fractions of liver, kidney, mammary gland, brown adipose tissue or white adipose tissue. 4. The antibodies were relatively less effective in reactions against pyruvate carboxylase from sheep liver than against the enzyme from rat tissues. 5. Pyruvate carboxylase antibodies did not inactivate either propionyl-CoA carboxylase or acetyl-CoA carboxylase from rat liver. 6. It is concluded that pyruvate carboxylase in lipogenic tissues is similar antigenically to the enzyme in gluconeogenic tissues and that the soluble activities of pyruvate carboxylase detected in many rat tissues do not represent discrete enzymes but are the result of mitochondrial damage during tissue homogenization.


1991 ◽  
Vol 279 (1) ◽  
pp. 303-308 ◽  
Author(s):  
L Pénicaud ◽  
P Ferré ◽  
F Assimacopoulos-Jeannet ◽  
D Perdereau ◽  
A Leturque ◽  
...  

Previous experiments have shown that insulin-induced glucose utilization is increased in white adipose tissue of young obese Zucker rats. We have investigated the possible role of over-expression of the muscle/fat glucose transporter (Glut 4) and key lipogenic enzymes in this increased insulin-responsiveness. The amount or activity and the mRNA concentrations of Glut 4, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were measured before and after weaning in white adipose tissue of obese and lean Zucker rats. Comparison of the levels of Glut 4 and lipogenic-enzyme expression in 15-day-old suckling and 30-day-old weaned rats on a high-carbohydrate diet shows a marked increase in the latter group. The increase was, in lean and obese rats respectively, 6- and 7-fold for the amount of Glut 4 and 2- and 3-fold for its mRNA concentrations, 40- and 100-fold for the activity of lipogenic enzymes (FAS and ACC) and 30- and 10-fold for their mRNA concentrations. Furthermore, all these parameters, except the amount of Glut 4, were 2-5-fold higher in obese rats, both before and after weaning. Changes at weaning were largely blunted when rats were weaned on to a high-fat diet, although the differences between lean and obese rats persisted, and even became significant for the amount of Glut 4. Whatever the experimental conditions, plasma insulin levels were significantly higher in obese than in lean rats. These results indicate the existence of an enhanced expression of Glut 4, FAS and ACC in white adipose tissue of young obese fa/fa rats which could be related to the increased plasma insulin levels.


1982 ◽  
Vol 206 (3) ◽  
pp. 667-669 ◽  
Author(s):  
P. John Weaire ◽  
Tazeen F. Kanagasabai

Cycloplasmic preparations from brown and white adipose tissues were assayed for three lipogenic enzymes throughout a programme of starvation followed by refeeding on either a normal or a white-bread diet. In the brown adipose tissue of rats fed on a white-bread diet the three enzymes were elevated to levels significantly higher than those in white adipose tissue.


2018 ◽  
Vol 1 (5) ◽  
Author(s):  
Haihui Zhuang ◽  
Sari M Karvinen ◽  
Xiaobo Zhang ◽  
Xiaoyan Wang ◽  
Xiaowei Ojanen ◽  
...  

Objective Aerobic capacity is a quantitative predictor of the morbidity and mortality in many diverse patient populations. While aging is the main factor affecting aerobic capacity. The present study aimed to assess the effect of aerobic capacity and aging on metabolic profile in rats and to investigate the metabolic interactions between white adipose tissue (WAT), muscle and serum. Methods In this study, we used rat models that were selectively bred to differ in maximal running capacity (High capacity runners (HCR) and Low capacity runners (LCR)). Part of the rats were sacrificed after 9 months and the rest at 21 months. The effect of aerobic capacity on metabolic profile was assessed from 9 months old young rats (HCR-Y and LCR-Y), while the effect of aging on the metabolic profile in different capacity rats was determined comparing 9 months to 21 months old rats (HCR-O and LCR-O). Nuclear magnetic resonance (NMR) spectroscopy was performed to detect the metabolomics of WAT, muscle and serum. Partial least-squares-discriminant analysis (PLS-DA) was used for pattern recognition between HCR-Y and LCR-Y and between HCR-O and LCR-O. Metabolites with variable influence on projection (VIP) >1.0 and p<0.05 were classified as significantly different metabolites between groups. Spearman correlation was used to assess the metabolic interactions between white adipose tissue (WAT), muscle and serum. Results  HCR-Y rats had significantly higher skeletal muscle mass-to-body mass ratio (p<0.001), while lower body mass (p<0.001), fat mass (p<0.001), skeletal muscle mass (p=0.035) and fat mass to body mass ratio (p=0.004) than LCR-Y rats. The running capacity of HCR-Y rats was 132.7% (best running speed) better than LCR-Y rats (p<0.001). However, with age, the difference between body compositions between the two capacity groups became insignificant. HCR-O only had significantly lower body mass than the LCR-O (p=0.02). Running capacity (p=0.06) was 86.4% (best running speed) higher in the HCR-O rats than that of the LCR-O rats. PLS-DA revealed marked effects of aerobic capacity on metabolic profile in all three tissue types between HCR-Y and LCR-Y. The metabolic profile classification and prediction was best (i.e. sharper) in muscle than in WAT and serum. In addition, muscle and serum contained more significantly different metabolites than WAT in HCR-Y than in LCR-Y. Pathway analysis of the significantly different metabolites between HCR-Y and LCR-Y revealed that all the pathways belong to the lipid metabolism and amino acid metabolism in muscle while in serum it is only amino acid metabolism. However, in the case of the old groups, the PLS-DA gave reversed results. It revealed that WAT performed best in terms of classification and prediction of metabolites between HCR-O and LCR-O and had the most significantly different metabolites out of the three tissue types. The significantly different metabolites’ pathways belong to lipid metabolism in WAT. When assessing the metabolic interaction between different tissue types, all significantly different metabolites between HCR and LCR rats in young and old groups were moderately or strongly correlated (Spearman correlation between 0.45-0.9) with one or more metabolites in any of the three tissues. Conclusions In this study, we assessed the metabolic profile and body composition of WAT, muscle and serum in young and old rats with different aerobic capacities. We found that aerobic capacity greatly impacts body composition and the metabolic profile in muscle and serum in young rats, however the impact is attenuated with age. In addition, it is aging and not aerobic capacity that had the most influence on WAT metabolites. This suggest that WAT has more important role in aging process than previously assumed.


1979 ◽  
Vol 57 (3) ◽  
pp. 197-200 ◽  
Author(s):  
J. H. Tong ◽  
A. D'Iorio ◽  
C. Kandaswami

The substrate specificity of mitochondrial monoamine oxidase (MAO) in pancreatic and adipose tissues of obese mice and their lean counterparts was determined. The pancreatic MAO of obese mice had a greater specific activity than that of the lean mice. The white adipose tissue MAO was found to be more active than the brown adipose MAO in both groups of mice. While there was no appreciable difference in the MAO activities of brown adipose tissues between obese and lean mice, the enzyme from the white adipose tissue of obese mice had a higher specific activity than that of the lean mice. The higher MAO activity in white adipose tissue was observed when tyramine or serotonin was employed as substrate but not with benzylamine. Examination of mitochondrial MAO from epididymal adipocytes revealed marked differences in the properties of the enzyme between whole adipose tissue and isolated adipocytes. The inhibition characteristics of MAO from these tissues were studied with the specific inhibitors clorgyline and deprenyl.


2020 ◽  
Vol 477 (23) ◽  
pp. 4599-4601
Author(s):  
Nusrat Hussain ◽  
Sheng-Ju Chuang ◽  
Manuel Johanns ◽  
Didier Vertommen ◽  
Gregory R. Steinberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document