scholarly journals Increased gene expression of lipogenic enzymes and glucose transporter in white adipose tissue of suckling and weaned obese Zucker rats

1991 ◽  
Vol 279 (1) ◽  
pp. 303-308 ◽  
Author(s):  
L Pénicaud ◽  
P Ferré ◽  
F Assimacopoulos-Jeannet ◽  
D Perdereau ◽  
A Leturque ◽  
...  

Previous experiments have shown that insulin-induced glucose utilization is increased in white adipose tissue of young obese Zucker rats. We have investigated the possible role of over-expression of the muscle/fat glucose transporter (Glut 4) and key lipogenic enzymes in this increased insulin-responsiveness. The amount or activity and the mRNA concentrations of Glut 4, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were measured before and after weaning in white adipose tissue of obese and lean Zucker rats. Comparison of the levels of Glut 4 and lipogenic-enzyme expression in 15-day-old suckling and 30-day-old weaned rats on a high-carbohydrate diet shows a marked increase in the latter group. The increase was, in lean and obese rats respectively, 6- and 7-fold for the amount of Glut 4 and 2- and 3-fold for its mRNA concentrations, 40- and 100-fold for the activity of lipogenic enzymes (FAS and ACC) and 30- and 10-fold for their mRNA concentrations. Furthermore, all these parameters, except the amount of Glut 4, were 2-5-fold higher in obese rats, both before and after weaning. Changes at weaning were largely blunted when rats were weaned on to a high-fat diet, although the differences between lean and obese rats persisted, and even became significant for the amount of Glut 4. Whatever the experimental conditions, plasma insulin levels were significantly higher in obese than in lean rats. These results indicate the existence of an enhanced expression of Glut 4, FAS and ACC in white adipose tissue of young obese fa/fa rats which could be related to the increased plasma insulin levels.

1997 ◽  
pp. 693-700 ◽  
Author(s):  
A Shimaya ◽  
O Noshiro ◽  
R Hirayama ◽  
T Yoneta ◽  
K Niigata ◽  
...  

Genetically obese Zucker rats exhibit mild hyperglycaemia and hyperinsulinaemia suggesting the existence of peripheral insulin resistance. We have examined the effects of YM268, an analogue of thiazolidinedione, on the content and translocation of a glucose transporter (GLUT4) in epididymal adipose tissue in 11-week-old obese and lean Zucker rats. The administration of YM268 at a dose of 10 mg/kg for 2 weeks ameliorated hyperglycaemia, hyperinsulinaemia, and impaired glucose tolerance after glucose load in obese rats. The GLUT4 content per fat pad in obese rats was reduced to 36% of that in lean littermates. Obese rats treated with YM268 increased GLUT4 concentrations in their fat pads from a basal value of 36% up to 191% of the level in lean rats. Furthermore, in adipocytes prepared from obese rats, an increase in the ratio of GLUT4 in plasma membrane to the total amount of GLUT4 (PM-GLUT4 ratio) induced by the submaximal concentration of insulin (0.3 nmol/l) was significantly attenuated compared with that in lean rats. But the maximum effect of insulin (3 nmol/l) was not attenuated. Meanwhile, YM268 had no significant effect on the attenuated PM-GLUT4 ratio in response to insulin in obese rats. These data suggested that one of the mechanisms by which YM268 improved insulin resistance in obese Zucker rats was to normalize the decreased GLUT4 content in the adipose tissue.


1988 ◽  
Vol 254 (2) ◽  
pp. 483-487 ◽  
Author(s):  
I Dugail ◽  
A Quignard-Boulange ◽  
R Bazin ◽  
X Le Liepvre ◽  
M Lavau

The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression was studied during the onset of obesity in the genetically obese (fa/fa) rat by determination of GAPDH activity and hybridizable mRNA amounts in adipose tissue and liver from suckling and weanling rats. GADPH activity remained low throughout the suckling period, and a burst of activity occurred after weaning in both lean and obese pups. As early as 7 days of age, adipose tissue from pre-obese rats displayed a significant increase in enzyme activity, whereas no difference could be detected in the liver. In both suckling (16 days of age) and weanling (30 days of age) obese rats a proportionate increase in GAPDH activity and mRNA amounts was observed in adipose tissue, but not in liver. It is concluded that the obese genotype influences GAPDH gene expression at a pretranslational level and in a tissue-specific manner. This phenomenon could partly contribute to the hyperactive fat accretion in the obese rat, since glycolysis is the major metabolic pathway for lipogenic substrates in adipose tissue.


1992 ◽  
Vol 262 (1) ◽  
pp. R33-R38 ◽  
Author(s):  
J. R. Vasselli ◽  
J. A. Fiene ◽  
C. A. Maggio

In growing male obese Zucker rats, hyperphagia reaches a maximum or “breakpoint” and declines at an earlier age with high fat than with chow-type diets. A serial adipose tissue biopsy technique was used to correlate changes of retroperitoneal adipocyte size and feeding behavior in 5- to 7-wk-old male lean and obese rats fed laboratory chow or a 35% fat diet until 30 wk of age. Although chow-fed groups had significantly greater cumulative intake, fat-fed groups had significantly greater body weight gain, retroperitoneal depot weight, and adipocyte number. Mean adipocyte size increased continuously in chow-fed groups but decreased over weeks 20-30 in fat-fed groups, reflecting increased adipocyte number. In fat-fed obese rats, hyperphagia reached a breakpoint at 11 wk and disappeared by 13 wk. In chow-fed obese rats, hyperphagia reached a breakpoint at 15-16 wk and disappeared by 19 wk. Biopsy samples revealed that adipocyte size of fat-fed obese rats was already close to maximal at 10 wk (1.12 micrograms lipid), while that of chow-fed obese rats only approached maximal at 20 wk (0.81 microgram lipid). At these time points, lipoprotein lipase activity paralleled adipocyte size. These data indicate that the duration of the growing obese rat's hyperphagia coincides with adipocyte filling and suggest the existence of feeding stimulatory and inhibitory signals from adipose tissue.


1995 ◽  
Vol 311 (1) ◽  
pp. 161-166 ◽  
Author(s):  
I Uphues ◽  
T Kolter ◽  
B Goud ◽  
J Eckel

Cardiac ventricular tissue of lean and genetically obese (fa/fa) Zucker rats was used to study the expression, subcellular distribution and insulin-induced recruitment of the glucose transporter GLUT4 and to elucidate possible molecular alterations of the translocation process. Hearts were removed from basal and insulin-treated (20 min) lean and obese Zucker rats, and processed for subcellular fractionation and Western blotting of proteins. In obese rats, the total GLUT4 content in a crude membrane fraction was reduced to 75 +/- 8% (P = 0.019) of lean controls. In contrast, GLUT4 abundance in plasma membranes was not significantly different between lean and obese rats with a concomitant decrease (47 +/- 3%) in the microsomal fraction of obese animals. In plasma membranes of lean animals insulin was found to increase the GLUT4 abundance to 294 +/- 43% of control with a significantly (P = 0.009) reduced effect in the obese group (139 +/- 10% of control). In these animals insulin failed to recruit GLUT4 from the microsomal fraction, whereas the hormone induced a significant decrease (41 +/- 4%) of microsomal GLUT4 in lean controls. In GLUT4-enriched membrane vesicles, obtained from cardiac microsomes of lean rats, a 24 kDa GTP-binding protein could be detected, whereas no significant labelling of this species was observed in GLUT4 vesicles prepared from obese animals. In addition to the translocation of GLUT4, insulin was found to promote the movement of the small GTP-binding protein rab4A from the cytosol (decrease to 61 +/- 13% of control) to the plasma membrane (increase to 177 +/- 19% of control) in lean rats with no effect of the hormone on rab4A redistribution in the obese group. In conclusion, cardiac glucose uptake of insulin-resistant obese Zucker rats is subject to multiple cellular abnormalities involving a reduced expression, altered redistribution and defective recruitment of GLUT4. We show here an association of the latter defect with alterations at the level of small GTP-binding proteins possibly leading to an impaired trafficking of GLUT4 in the insulin-resistant state.


1991 ◽  
Vol 261 (2) ◽  
pp. E246-E251 ◽  
Author(s):  
D. H. Bessesen ◽  
A. D. Robertson ◽  
R. H. Eckel

Lipoprotein lipase (LPL) activity and mRNA levels were measured in cardiac muscle and adipose tissue from lean, obese, and weight-stable reduced-obese Zucker rats, both fasted and 2 h after feeding. Fasting epididymal fat LPL activity was substantially higher in obese rats relative to lean rats [6.9 vs. 0.2 nmol free fatty acid (FFA).10(6) cells-1.min-1; P = 0.0001], and was higher still in reduced-obese rats (15.7 nmol FFA.10(6) cells-1.min-1; P = 0.002). Adipose tissue LPL increased with feeding in all three groups. In marked contrast, fasting cardiac muscle LPL was lower in obese rats relative to lean (28.8 vs. 38.5 nmol FFA.g-1.min-1; P = 0.0064) and was lower still in reduced-obese rats (14.5 nmol FFA.g-1.min-1; P = 0.0001). LPL mRNA levels increased in adipose tissue along with enzyme activity; however, the magnitude of the changes were relatively small, suggesting that the primary regulatory steps are posttranslational. Weight reduction studies were also carried out in Sprague-Dawley rats with similar results. These studies show that sustained weight reduction results in coordinate changes in tissue-specific LPL, favoring delivery of lipoprotein triglyceride fatty acids to adipose tissue relative to cardiac muscle and the restoration of energy stores.


1998 ◽  
Vol 275 (6) ◽  
pp. R1898-R1908 ◽  
Author(s):  
Brenda G. Marques ◽  
Dorothy B. Hausman ◽  
Roy J. Martin

Inguinal, epididymal, and retroperitoneal adipose tissue from lean and obese Zucker rats, 3–15 wk of age, was used to determine the association among adipocyte size distribution, the presence of paracrine growth factors in adipose tissue, and subsequent changes in adipocyte number. For each specific depot and time point, obese rats had a greater percentage of large adipocytes than did lean rats. A positive correlation ( P < 0.02) was found in obese rats between the percentage of inguinal and epididymal adipocytes in the 140- to 180-μm size range and the ability of conditioned medium prepared from these depots to stimulate cellular proliferation in a bioassay system utilizing preadipocytes from inguinal fat pads of normal rats. Proliferative activity of the conditioned medium from all depots in obese rats was positively correlated ( P < 0.01) to subsequent changes in fat cell number. The data presented here for the inguinal and epididymal depot of obese Zucker rats are consistent with the hypothesis that enlarged adipocytes secrete growth factors that induce preadipocyte proliferation.


1992 ◽  
Vol 284 (3) ◽  
pp. 813-817
Author(s):  
C Laurent-Winter ◽  
I Dugail ◽  
A Quignard-Boulange ◽  
X Le Liepvre ◽  
M Lavau

Using two-dimensional electrophoresis on total extracts of adipose tissue from young lean (Fa/fa) and obese (fa/fa) Zucker rats, we have investigated the existence of early events at the protein level, before obvious obesity. Our results indicate that the two genotypes do not differ at 3 days of age in terms of polypeptide pattern. By 7 days of age, two polypeptides are transiently repressed in the fatty genotype, leading us to suggest their potential involvement in the onset of obesity. However, most of the differences between the lean and obese rats are detected at 30 days of age, characterized by an increase in the accumulation of several peptides in the adipose tissue of obese rats, in good agreement with the multiple biochemical changes previously identified at this stage of the disease. These results present evidence of new peptides that may be of interest in the study of the obesity syndrome.


1992 ◽  
Vol 282 (3) ◽  
pp. 765-772 ◽  
Author(s):  
M Camps ◽  
A Castelló ◽  
P Muñoz ◽  
M Monfar ◽  
X Testar ◽  
...  

1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and white muscle, as well as in brown and white adipose tissue from 7-day streptozotocin-induced diabetic and 48 h-fasted rats. 2. In agreement with previous data, white adipose tissue showed a substantial decrease in GLUT-4 mRNA and protein levels in response to both diabetes and fasting. Similarly, GLUT-4 mRNA and protein markedly decreased in brown adipose tissue in both insulinopenic conditions. 3. Under control conditions, the level of expression of GLUT-4 protein content differed substantially in heart, red and white skeletal muscle. Thus GLUT-4 protein was maximal in heart, and red muscle had a greater GLUT-4 content compared with white muscle. In spite of the large differences in GLUT-4 protein content, GLUT-4 mRNA levels were equivalent in heart and red skeletal muscle. 4. In heart, GLUT-4 mRNA decreased to a greater extent than GLUT-4 protein in response to diabetes and fasting. In contrast, red muscle showed a greater decrease in GLUT-4 protein than in mRNA in response to diabetes or fasting, and in fact no decrease in GLUT-4 mRNA content was detectable in fasting. On the other hand, preparations of white skeletal muscle showed a substantial increase in GLUT-4 mRNA under both insulinopenic conditions, and that was concomitant to either a modest decrease in GLUT-4 protein in diabetes or to no change in fasting. 5. These results indicate that (a) the effects of diabetes and fasting are almost identical and lead to changes in GLUT-4 expression that are tissue-specific, (b) white adipose tissue, brown adipose tissue and heart respond similarly to insulin deficiency by decreasing GLUT-4 mRNA to a larger extent than GLUT-4 protein, and (c) red and white skeletal muscle respond to insulinopenic conditions in a heterogeneous manner which is characterized by enhanced GLUT-4 mRNA/protein ratios.


Sign in / Sign up

Export Citation Format

Share Document