Structural Modifications of Platelet Membrane Glycoprotein GPIb in the Tn Syndrome

Author(s):  
D. Blanchard ◽  
N. Kieffer ◽  
A. T. Nurden ◽  
J. P. Cartron
1996 ◽  
Vol 16 (02) ◽  
pp. 114-138 ◽  
Author(s):  
R. E. Scharf

SummarySpecific membrane glycoproteins (GP) expressed by the megakaryocyte-platelet system, including GPIa-lla, GPIb-V-IX, GPIIb-llla, and GPIV are involved in mediat-ing platelet adhesion to the subendothelial matrix. Among these glycoproteins, GPIIb-llla plays a pivotal role since platelet aggregation is exclusively mediated by this receptor and its interaction with soluble macromolecular proteins. Inherited defects of the GPIIb-llla or GPIb-V-IX receptor complexes are associated with bleeding disorders, known as Glanzmann's thrombasthenia, Bernard-Soulier syndrome, or platelet-type von Willebrand's disease, respectively. Using immuno-chemical and molecular biology techniques, rapid advances in our understanding of the molecular genetic basis of these disorders have been made during the last few years. Moreover, analyses of patients with congenital platelet membrane glycoprotein abnormalities have provided valuable insights into molecular mechanisms that are required for structural and functional integrity, normal biosynthesis of the glycoprotein complexes and coordinated membrane expression of their constituents. The present article reviews the current state of knowledge of the major membrane glycoproteins in health and disease. The spectrum of clinical bleeding manifestations and established diagnostic criteria for each of these dis-orders are summarized. In particular, the variety of molecular defects that have been identified so far and their genetic basis will be discussed.


1988 ◽  
Vol 263 (23) ◽  
pp. 11025-11028 ◽  
Author(s):  
J C Loftus ◽  
E F Plow ◽  
L K Jennings ◽  
M H Ginsberg

2003 ◽  
Vol 9 (11) ◽  
pp. 461-464 ◽  
Author(s):  
Frédéric Adam ◽  
Marie-Christine Bouton ◽  
Marie-Geneviève Huisse ◽  
Martine Jandrot-Perrus

Blood ◽  
1988 ◽  
Vol 72 (3) ◽  
pp. 1086-1088 ◽  
Author(s):  
J Drouin ◽  
JL McGregor ◽  
S Parmentier ◽  
CA Izaguirre ◽  
KJ Clemetson

A study of the Bernard-Soulier syndrome in two unrelated families using different polyclonal antibodies in a sensitive immunoblot assay showed residual amounts of platelet membrane glycoprotein (GP) lb in the eight homozygotes, as well as the near-absence of GPlb beta and GPIX. The eight heterozygotes studied showed a double band pattern for GPlb and about half the normal level of GPlb beta and GPIX. Therefore, we conclude that the Bernard-Soulier syndrome is heterogeneous and is probably not due to gene deletions.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 698-705 ◽  
Author(s):  
Takanori Moriki ◽  
Mitsuru Murata ◽  
Tetsuya Kitaguchi ◽  
Hironobu Anbo ◽  
Makoto Handa ◽  
...  

Abstract Platelet-type von Willebrand disease (vWD) is a congenital bleeding disorder characterized by heightened ristocetin-induced platelet aggregation caused by abnormally high affinity between the platelet membrane glycoprotein (GP) Ib/IX complex and von Willebrand factor (vWF ). Two distinct point mutations, Gly233 to Val and Met239 to Val, have been reported in GPIbα. We have constructed a recombinant GPIbα fragment containing the latter mutation, Met239 to Val (M239V) and characterized the mutant molecule using two methods, ie, interaction between soluble vWF and immobilized M239V and inhibition of platelet aggregation by purified soluble M239V. Spontaneous binding (ie, binding without any inducers) was observed between 125I-vWF and immobilized M239V but not between 125I-vWF and immobilized wild-type (WT) GPIbα. The addition of low concentrations of ristocetin (0.2 mg/mL) induced specific 125I-vWF binding to immobilized M239V, but not to WT GPIbα. At high concentrations of ristocetin (1.2 mg/mL), both WT GPIbα and M239V specifically bound to 125I-vWF. Thus, M239V reproduced the unique functional abnormality of the GPIb/IX complex in platelet-type vWD. Moreover, the purified soluble M239V inhibited platelet aggregation induced by low concentration of ristocetin (0.3 mg/mL) in platelet-rich plasma from a patient having Met239 to Val mutation, whereas purified WT did not. These results provide direct evidences that the reported point mutation is the responsible molecular basis of this disorder.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2668-2676 ◽  
Author(s):  
GP Visentin ◽  
PJ Newman ◽  
RH Aster

Abstract Recent studies have shown that antibodies characteristic of quinine- and quinidine-induced thrombocytopenia sometimes recognize the platelet membrane glycoprotein (GP) complex IIb/IIIa in addition to their well known target, GPIb/IX. We have investigated the frequency with which drug-induced antibodies bind to GPIIb/IIIa and the nature of their target epitopes. In studies of sera from 13 patients sensitive to quinidine or quinine, we found that 10 contained IgG antibodies specific for both GPIb/IX and GPIIb/IIIa, two reacted with GPIb/IX alone, and one reacted with GPIIb/IIIa alone. In all cases, the presence of drug was required for binding of IgG to target GPs. By immunoabsorption, we found that each of five polyspecific sera contained at least two different antibodies, one reactive with GPb/IX and the other with GPIIb/IIIa. Further studies with eight drug- dependent antibodies (DDAb) specific for GPIIb/IIIa showed that three recognized the GPIIb/IIIa complex only, one recognized GPIIb alone, and three recognized GPIIIa alone. The eighth serum appeared to bind to both GPIIIa alone and to an epitope determined by the GPIIb/IIIa complex. The three antibodies specific for GPIIIa alone also reacted with GPIIIa deglycosylated with endo-H, and with the major (61 Kd) fragment obtained by chymotryptic digestion of GPIIIa but failed to react with reduced GPIIIa. These findings demonstrate that, in drug- induced, immunologic thrombocytopenia, the anti-platelet immune response is typically directed against epitopes on both GPIb/IX and GPIIb/IIIa. The three DDAb we studied that were specific for GPIIIa alone recognize epitopes resistant to chymotrypsin and endo-H treatment that are dependent on intrachain disulfide bonding.


Sign in / Sign up

Export Citation Format

Share Document