scholarly journals Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

2016 ◽  
Vol 38 (5) ◽  
pp. 2030-2040 ◽  
Author(s):  
Qi Zhou ◽  
Xinzhou Yang ◽  
Mingrui Xiong ◽  
Xiaolan Xu ◽  
Li Zhen ◽  
...  

Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM) was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM), GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor) and U73122 (PLC inhibitor). However, 2-APB (IP3R blocker) only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

2013 ◽  
Vol 24 (16) ◽  
pp. 2544-2557 ◽  
Author(s):  
L. Amanda Sadacca ◽  
Joanne Bruno ◽  
Jennifer Wen ◽  
Wenyong Xiong ◽  
Timothy E. McGraw

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


1997 ◽  
Vol 321 (1) ◽  
pp. 233-238 ◽  
Author(s):  
Eric HAJDUCH ◽  
J. Carlos ALEDO ◽  
Colin WATTS ◽  
Harinder S. HUNDAL

Acute insulin stimulation of glucose transport in fat and skeletal muscle occurs principally as a result of the hormonal induced translocation of the GLUT4 glucose transporter from intracellular vesicular stores to the plasma membrane. The precise mechanisms governing the fusion of GLUT4 vesicles with the plasma membrane are very poorly understood at present but may share some similarities with synaptic vesicle fusion, as vesicle-associated membrane protein (VAMP) and cellubrevin, two proteins implicated in the process of membrane fusion, are resident in GLUT4-containing vesicles isolated from rat and murine 3T3-L1 adipocytes respectively. In this study we show that proteolysis of both cellubrevin and VAMP, induced by electroporation of isolated rat adipocytes with tetanus toxin, does not impair insulin-stimulated glucose transport or GLUT4 translocation. The hormone was found to stimulate glucose uptake by approx. 16-fold in freshly isolated rat adipocytes. After a single electroporating pulse, the ability of insulin to activate glucose uptake was lowered, but the observed stimulation was nevertheless nearly 5-fold higher than the basal rate of glucose uptake. Electroporation of adipocytes with 600 nM tetanus toxin resulted in a complete loss of both cellubrevin and VAMP expression within 60 min. However, toxin-mediated proteolysis of both these proteins had no effect on the ability of insulin to stimulate glucose transport which was elevated approx. 5-fold, an activation of comparable magnitude to that observed in cells electroporated without tetanus toxin. The lack of any significant change in insulin-stimulated glucose transport was consistent with the finding that toxin-mediated proteolysis of both cellubrevin and VAMP had no detectable effect on insulin-induced translocation of GLUT4 in adipocytes. Our findings indicate that, although cellubrevin and VAMP are resident proteins in adipocyte GLUT4-containing vesicles, they are not required for the acute insulin-induced delivery of GLUT4 to the plasma membrane.


2004 ◽  
Vol 24 (17) ◽  
pp. 7567-7577 ◽  
Author(s):  
Makoto Funaki ◽  
Paramjeet Randhawa ◽  
Paul A. Janmey

ABSTRACT GLUT4 (glucose transporter 4) plays a pivotal role in insulin-induced glucose uptake to maintain normal blood glucose levels. Here, we report that a cell-permeable phosphoinositide-binding peptide induced GLUT4 translocation to the plasma membrane without inhibiting IRAP (insulin-responsive aminopeptidase) endocytosis. However, unlike insulin treatment, the peptide treatment did not increase glucose uptake in 3T3-L1 adipocytes, indicating that GLUT4 translocation and activation are separate events. GLUT4 activation can occur at the plasma membrane, since insulin was able to increase glucose uptake with a shorter time lag when inactive GLUT4 was first translocated to the plasma membrane by pretreating the cells with this peptide. Inhibition of phosphatidylinositol (PI) 3-kinase activity failed to inhibit GLUT4 translocation by the peptide but did inhibit glucose uptake when insulin was added following peptide treatment. Insulin, but not the peptide, stimulated GLUT1 translocation. Surprisingly, the peptide pretreatment inhibited insulin-induced GLUT1 translocation, suggesting that the peptide treatment has both a stimulatory effect on GLUT4 translocation and an inhibitory effect on insulin-induced GLUT1 translocation. These results suggest that GLUT4 requires translocation to the plasma membrane, as well as activation at the plasma membrane, to initiate glucose uptake, and both of these steps normally require PI 3-kinase activation.


2005 ◽  
Vol 19 (4) ◽  
pp. 1067-1077 ◽  
Author(s):  
Ellen M. van Dam ◽  
Roland Govers ◽  
David E. James

Abstract Insulin stimulates the translocation of glucose transporter GLUT4 from intracellular vesicles to the plasma membrane (PM). This involves multiple steps as well as multiple intracellular compartments. The Ser/Thr kinase Akt has been implicated in this process, but its precise role is ill defined. To begin to dissect the role of Akt in these different steps, we employed a low-temperature block. Upon incubation of 3T3-L1 adipocytes at 19 C, GLUT4 accumulated in small peripheral vesicles with a slight increase in PM labeling concomitant with reduced trans-Golgi network labeling. Although insulin-dependent translocation of GLUT4 to the PM was impaired at 19 C, we still observed movement of vesicles toward the surface. Strikingly, insulin-stimulated Akt activity, but not phosphatidylinositol 3 kinase activity, was blocked at 19 C. Consistent with a multistep process in GLUT4 trafficking, insulin-stimulated GLUT4 translocation could be primed by treating cells with insulin at 19 C, whereas this was not the case for Akt activation. These data implicate two insulin-regulated steps in GLUT4 translocation: 1) redistribution of GLUT4 vesicles toward the cell cortex—this process is Akt-independent and is not blocked at 19 C; and 2) docking and/or fusion of GLUT4 vesicles with the PM—this process may be the major Akt-dependent step in the insulin regulation of glucose transport.


2017 ◽  
Vol 59 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Raquel S Campello ◽  
Luciana A Fátima ◽  
João Nilton Barreto-Andrade ◽  
Thais F Lucas ◽  
Rosana C Mori ◽  
...  

Impaired insulin-stimulated glucose uptake involves reduced expression of the GLUT4 (solute carrier family 2 facilitated glucose transporter member 4, SLC2A4 gene). 17β-estradiol (E2) modulates SLC2A4/GLUT4 expression, but the involved mechanisms are unclear. Although E2 exerts biological effects by binding to estrogen receptors 1/2 (ESR1/2), which are nuclear transcriptional factors; extranuclear effects have also been proposed. We hypothesize that E2 regulates GLUT4 through an extranuclear ESR1 mechanism. Thus, we investigated the effects of E2 upon (1) subcellular distribution of ESRs and the proto-oncogene tyrosine-protein kinases (SRC) involvement; (2) serine/threonine-protein kinase (AKT) activation; (3) Slc2a4/GLUT4 expression and (4) GLUT4 subcellular distribution and glucose uptake in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were cultivated or not with E2 for 24 h, and additionally treated or not with ESR1-selective agonist (PPT), ESR1-selective antagonist (MPP) or selective SRC inhibitor (PP2). Subcellular distribution of ESR1, ESR2 and GLUT4 was analyzed by immunocytochemistry; Slc2a4 mRNA and GLUT4 were quantified by qPCR and Western blotting, respectively; plasma membrane GLUT4 translocation and glucose uptake were analyzed under insulin stimulus for 20 min or not. E2 induced (1) translocation of ESR1, but not of ESR2, from nucleus to plasma membrane and AKT phosphorylation, effects mimicked by PPT and blocked by MPP and PP2; (2) increased Slc2a4/GLUT4 expression and (3) increased insulin-stimulated GLUT4 translocation and glucose uptake. In conclusion, E2 treatment promoted a SRC-mediated nucleus-plasma membrane shuttle of ESR1, and increased AKT phosphorylation, Slc2a4/GLUT4 expression and plasma membrane GLUT4 translocation; consequently, improving insulin-stimulated glucose uptake. These results unravel mechanisms through which estrogen improves insulin sensitivity.


2007 ◽  
Vol 403 (2) ◽  
pp. 353-358 ◽  
Author(s):  
William G. Roach ◽  
Jose A. Chavez ◽  
Cristinel P. Mîinea ◽  
Gustav E. Lienhard

Insulin stimulation of the trafficking of the glucose transporter GLUT4 to the plasma membrane is controlled in part by the phosphorylation of the Rab GAP (GTPase-activating protein) AS160 (also known as Tbc1d4). Considerable evidence indicates that the phosphorylation of this protein by Akt (protein kinase B) leads to suppression of its GAP activity and results in the elevation of the GTP form of a critical Rab. The present study examines a similar Rab GAP, Tbc1d1, about which very little is known. We found that the Rab specificity of the Tbc1d1 GAP domain is identical with that of AS160. Ectopic expression of Tbc1d1 in 3T3-L1 adipocytes blocked insulin-stimulated GLUT4 translocation to the plasma membrane, whereas a point mutant with an inactive GAP domain had no effect. Insulin treatment led to the phosphorylation of Tbc1d1 on an Akt site that is conserved between Tbc1d1 and AS160. These results show that Tbc1d1 regulates GLUT4 translocation through its GAP activity, and is a likely Akt substrate. An allele of Tbc1d1 in which Arg125 is replaced by tryptophan has very recently been implicated in susceptibility to obesity by genetic analysis. We found that this form of Tbc1d1 also inhibited GLUT4 translocation and that this effect also required a functional GAP domain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Man Mohan Shrestha ◽  
Chun-Yan Lim ◽  
Xuezhi Bi ◽  
Robert C. Robinson ◽  
Weiping Han

Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle contraction results in AMPK activation, which promotes GLUT4 translocation and PM insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4 translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4 translocation. We performed biochemical, molecular biology and fluorescent microscopy imaging experiments using gain- and loss-of-function mutants of tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4 translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of glucose homeostasis.


Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Louise Chang ◽  
Shian-Huey Chiang ◽  
Alan R. Saltiel

Previous studies have suggested that activation of the Rho family member GTPase TC10 is necessary but not sufficient for the stimulation of glucose transport by insulin. We show here that endogenous TC10α is rapidly activated in response to insulin in 3T3L1 adipocytes in a phosphatidylinositol 3-kinase-independent manner, whereas platelet-derived growth factor was without effect. Knockdown of TC10α but not TC10β by RNA interference inhibited insulin-stimulated glucose uptake as well as the translocation of the insulin-sensitive glucose transporter GLUT4 from intracellular sites to the plasma membrane. In contrast, loss of TC10α had no effect on the stimulation of Akt by insulin. Additionally, knockdown of TC10α inhibited insulin-stimulated translocation of its effector CIP4. These data indicate that TC10α is specifically required for insulin-stimulated glucose uptake in adipocytes.


2012 ◽  
Vol 40 (01) ◽  
pp. 163-175 ◽  
Author(s):  
Jarinyaporn Naowaboot ◽  
Patchareewan Pannangpetch ◽  
Veerapol Kukongviriyapan ◽  
Auemduan Prawan ◽  
Upa Kukongviriyapan ◽  
...  

Mulberry (Morus alba L.) leaf tea is promoted for its health benefits and the control of diabetes in Asian nations. The blood glucose lowering activity of mulberry leaf extract (MA) has been proven; however, the molecular basis underlying this effect remains unclear. The aim of the present work is to elucidate its mechanism of the antihyperglycemic action, by examining the effect of MA on glucose uptake and the translocation of glucose transporter 4 protein (GLUT4) to the plasma membrane of adipocytes isolated from diabetic rats. The incubation of adipocytes with 5–45 μg/ml MA resulted in 31–54% increase of glucose uptake in a dose-dependent manner. This glucose uptake enhancing effect was inhibited by the phosphoinositol 3-kinase (PI3-K) inhibitor, wortmannin (100 nM). The GLUT4 protein on the plasma membrane fraction of adipocytes was markedly increased after treatment with 15 μg/ml MA extract. Interestingly, gallic acid, one of the phenolic compounds found in MA extract, increased glucose uptake and enhanced the translocation of GLUT4 at concentrations comparable to the amount of gallic acid in the effective concentration ranges of MA. Thus, it is likely that gallic acid contributes, at least in part, to its antihyperglycemic activity. The present results suggest that the antihyperglycemic action of MA is mediated by increasing glucose uptake via the activation of PI3-K signaling pathway and translocation of GLUT4 to the plasma membrane. These findings are the first molecular evidence supporting the mulberry tea as herbal medicine for diabetic patients.


2001 ◽  
Vol 21 (22) ◽  
pp. 7852-7861 ◽  
Author(s):  
Liora Braiman ◽  
Addy Alt ◽  
Toshio Kuroki ◽  
Motoi Ohba ◽  
Asia Bak ◽  
...  

ABSTRACT Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKCζ in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKCζ to associate specifically with the GLUT4 compartments and that PKCζ together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKCζ and GLUT4 recycled independently of one another. To further establish the importance of PKCζ in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKCζ (DNPKCζ) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKCζ was associated with a marked increase in the activity of this isoform. The overexpressed, active PKCζ coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKCζ caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKCζ induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKCζ disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKCζ regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.


Sign in / Sign up

Export Citation Format

Share Document