scholarly journals Anidulafungin-Induced Suicidal Erythrocyte Death

2016 ◽  
Vol 38 (6) ◽  
pp. 2272-2284 ◽  
Author(s):  
Thomas Peter ◽  
Rosi Bissinger ◽  
Guilai Liu ◽  
Florian Lang

Background/Aims: The novel antifungal drug Anidulafungin is used for the treatment of diverse fungal infections including candidiasis and aspergillosis. The traditional antifungal drug amphotericin B has previously been shown to trigger eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, activated protein kinase C (PKC), casein kinase 1α or p38 kinase and activated caspases. Inhibitors of eryptosis include nitric oxide (NO). The present study explored, whether Anidulafungin induces eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine abundance at the erythrocyte surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Hemolysis was quantified by measuring haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Anidulafungin (1.5 - 6 µg/ml) significantly increased hemolysis and the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Anidulafungin (6 µg/ml) slightly, but significantly inceased Fluo3-fluorescence and the effect of Anidulafungin on annexin-V-binding was slightly, but significantly blunted by removal of extracellular Ca2+. The effect of Anidulafungin on annexin-V-binding was further significantly blunted by the p38 kinase inhibitor SB203580 (2 µM) and NO donor nitroprusside (1 µM). An increase of extracellular K+ concentration significantly blunted the effect of Anidulafungin on cell volume but not on annexin-V-binding. Anidulafungin rather decreased DCFDA fluorescence and the effect of Anidulafungin on annexin-V-binding was not significantly blunted by the antioxidant N-acetylcysteine (1 mM). Moreover, the effect of Anidulafungin on annexin-V-binding was not paralleled by significant increase of ceramide abundance and was not significantly blunted by PKC inhibitor staurosporine (1 µM), casein kinase 1α inhibitor D4476 (10 µM) or pancaspase inhibitor zVAD (10 µM). Conclusions: Anidulafungin triggers hemolysis and eryptosis with cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to Ca2+ entry and activation of p38 kinase.

2016 ◽  
Vol 39 (2) ◽  
pp. 584-595 ◽  
Author(s):  
Thomas Peter ◽  
Rosi Bissinger ◽  
Elena Signoretto ◽  
Andreas F. Mack ◽  
Florian Lang

Background/Aims: The antifungal drug Micafungin is used for the treatment of diverse fungal infections including candidiasis and aspergillosis. Side effects of Micafungin treatment include microangiopathic hemolytic anemia and thrombocytopenia with microvascular thrombosis. The development of thrombosis may be fostered by stimulation of eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, activated protein kinase C (PKC), casein kinase 1α or p38 kinase and activated caspases. The present study explored, whether Micafungin induces eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine abundance at the erythrocyte surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Hemolysis was quantified by measuring haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Micafungin (10 - 25 µg/ml) significantly increased hemolysis and the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Micafungin (25 µg/ml) did not significantly modify Fluo3-fluorescence, DCFDA fluorescence, or ceramide abundance. The effect of Micafungin on annexin-V-binding was not significantly modified by removal of extracellular Ca2+, by PKC inhibitor staurosporine (1 µM), p38 kinase inhibitor SB203580 (2 µM), casein kinase 1α inhibitor D4476 (10 µM) or pancaspase inhibitor zVAD (10 µM). Conclusions: Micafungin triggers hemolysis and eryptosis with cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane.


2016 ◽  
Vol 39 (3) ◽  
pp. 939-949 ◽  
Author(s):  
Thomas Peter ◽  
Rosi Bissinger ◽  
Florian Lang

Background/Aims: The echinocandin antifungal agent caspofungin has been shown to trigger apoptosis of fungal cells. Beyond that, caspofungin is toxic for host mitochondria. Even though lacking mitochondria, erythrocytes may enter apoptosis-like suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, caspase activation and/or activation of p38 kinase, protein kinase C, and casein kinase. The present study explored, whether caspofungin induces eryptosis and, if so, to shed some light on the cellular mechanisms involved. Methods: Flow cytometry was employed to determine phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to caspofungin (≥ 30 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly enhanced hemolysis, but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of caspofungin on annexin-V-binding was not significantly blunted by removal of extracellular Ca2+, by inhibition of caspases with pancaspase inhibitor zVAD (10 µM), or by addition of the antioxidant N-acetyl-cysteine (1 mM), p38 kinase inhibitor SB203580 (2 µM) or protein kinase C inhibitor staurosporine (1 µM). The effect of caspofungin on annexin-V-binding was, however, significantly blunted in the presence of casein kinase inhibitor D4476 (10 µM). Conclusions: Caspofungin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect possibly involving activation of casein kinase.


2015 ◽  
Vol 37 (6) ◽  
pp. 2496-2507 ◽  
Author(s):  
Rosi Bissinger ◽  
Ghada Bouguerra ◽  
Abdulla Al Mamun Bhuyan ◽  
Sabrina Waibel ◽  
Salem Abbès ◽  
...  

Background/Aims: The reverse transcriptase inhibitor efavirenz utilized for the treatment of human immunodeficiency virus (HIV)-1 infection, triggers suicidal cell death or apoptosis, an effect in part due to interference with mitochondrial potential. Side effects of efavirenz include anemia. Causes of anemia include accelerated clearance of circulating erythrocytes. Even though lacking mitochondria, erythrocytes may enter suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry and increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, as well as activation of p38 kinase, casein kinase 1α and/or cyclooxygenase. The present study explored, whether and how efavirenz induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing selective antibodies. Results: A 48 hours exposure of human erythrocytes to efavirenz (≥ 2 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter (2 µg/ml), significantly increased Fluo3-fluorescence (≥ 2 µg/ml), but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of efavirenz on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. The effect of efavirenz on annexin-V-binding was further significantly blunted by p38 kinase inhibitor SB203580 (2 µM) and casein kinase 1α inhibitor D4476 (10 µM), but not by cyclooxygenase inhibitor aspirin (50 µM). Conclusions: Efavirenz triggers cell shrinkage and phosphatidylserine translocation to the erythrocyte surface, an effect in part due to stimulation of Ca2+ entry as well as activation of p38 kinase and casein kinase 1α.


2016 ◽  
Vol 39 (2) ◽  
pp. 554-564 ◽  
Author(s):  
Elena Signoretto ◽  
Stefan A. Laufer ◽  
Florian Lang

Background/Aims: The diterpene alcohol Sclareol has been proposed for the treatment of malignancy. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, p38 kinase and casein kinase 1α. The present study explored, whether Sclareol induces eryptosis and, if so, shed light on the mechanisms involved. Methods: Phosphatidylserine abundance at the erythrocyte surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA)-dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Hemolysis was estimated from haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Sclareol (≥ 50 µM) significantly increased the percentage of annexin-V-binding cells without significantly modifying the average forward scatter, DCF-fluorescence or ceramide abundance. Sclareol (≥ 50 µM) further triggered hemolysis. Sclareol (100 µM) significantly increased Fluo3-fluorescence, but the effect of Sclareol on annexin-V-binding was not significantly blunted by removal of extracellular Ca2+. Instead, the effect of Sclareol on annexin-V-binding was significantly blunted in the presence of p38 kinase inhibitor skepinone (2 µM) and in the presence of casein kinase 1α inhibitor D4476 (10 µM). Conclusions: Sclareol triggers phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to activation of p38 kinase and casein kinase 1α.


2016 ◽  
Vol 38 (3) ◽  
pp. 1111-1120 ◽  
Author(s):  
Rosi Bissinger ◽  
Abdulla Al Mamun Bhuyan ◽  
Elena Signoretto ◽  
Florian Lang

Background/Aims: The antiviral drug Elvitegravir is used for the treatment of Human Immunodeficiency Virus (HIV) infections. The present study explored whether the drug is able to trigger eryptosis, the suicidal death of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, activated p38 kinase and activated caspases. The present study explored, whether Elvitegravir induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: Phosphatidylserine abundance at the erythrocyte surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Elvitegravir (≥ 1.5 µg/ml) significantly increased the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Elvitegravir (2.5 µg/ml) significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of Elvitegravir on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, but not in the presence of p38 kinase inhibitor SB203580 (2 µM) or in the presence of pancaspase inhibitor zVAD (10 µM). Conclusions: Elvitegravir triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+.


2016 ◽  
Vol 39 (4) ◽  
pp. 1638-1647 ◽  
Author(s):  
Morena Mischitelli ◽  
Mohamed Jemaà ◽  
Mustafa Almasry ◽  
Caterina Faggio ◽  
Florian Lang

Background/Aims: The bis-indole alkaloid Fascaplysin is effective against malignancy, an effect at least partially due to stimulation of tumor cell apoptosis. Similar to apoptosis of nucleated cells, erythrocytes could enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether Fascaplysin induces eryptosis and, if so, to shed light on the cellular mechanisms involved. Methods: Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from the hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Fascaplysin (≥ 5 µM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, and significantly increased Fluo3-fluorescence, DCFDA fluorescence as well as ceramide abundance. The effect of Fascaplysin on annexin-V-binding and forward scatter was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Fascaplysin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, oxidative stress and ceramide.


2015 ◽  
Vol 37 (6) ◽  
pp. 2464-2475 ◽  
Author(s):  
Marilena Briglia ◽  
Salvatrice Calabró ◽  
Elena Signoretto ◽  
Kousi Alzoubi ◽  
Stefan Laufer ◽  
...  

Background/Aims: Fucoxanthin, a carotenoid isolated from brown seaweeds, induces suicidal death or apoptosis of tumor cells and is thus considered for the treatment or prevention of malignancy. In analogy to apoptosis of nucleated cell, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and activation of p38 kinase or protein kinase C. The present study explored, whether and how fucoxanthin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence and lipid peroxidation using BODIPY fluoresence. Results: A 48 hours exposure of human erythrocytes to fucoxanthin significantly increased the percentage of annexin-V-binding cells (≥ 50 µM), significantly decreased average forward scatter (≥ 25 µM), significantly increased hemolysis (≥ 25 µM), significantly increased Fluo3-fluorescence (≥ 50 µM), significantly increased lipid peroxidation, but did not significantly modify DCFDA fluorescence. The effect of fucoxanthin on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+, and was insensitive to p38 kinase inhibitor skepinone (2 µM) and to protein kinase C inhibitor calphostin (100 nM). Conclusion: Fucoxanthin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 597-607 ◽  
Author(s):  
Mohamed Jemaà ◽  
Morena Mischitelli ◽  
Myriam Fezai ◽  
Mustafa Almasry ◽  
Caterina Faggio ◽  
...  

Background/Aims: The CDC25B inhibitor NSC-95397 triggers apoptosis of tumor cells and is thus considered for the treatment of malignancy. The substance is effective in part by modification of gene expression. Similar to apoptosis of nucleated cells erythrocytes may undergo eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, as well as activation of protein kinases. The present study explored, whether NSC-95397 induces eryptosis and, if so, to shed some light on the mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to NSC-95397 significantly increased the percentage of annexin-V-binding cells (≥ 1 µM), significantly decreased forward scatter (≥ 2.5 µM), and significantly increased Fluo3-fluorescence (≥ 1 µM), DCFDA fluorescence (5 µM) and ceramide abundance (≥ 5 µM). The effect of NSC-95397 (5 µM) on annexin-V-binding was slightly, but significantly blunted by removal of extracellular Ca2+ and by addition of the protein kinase C inhibitor staurosporine (1 µM). Conclusions: NSC-95397 triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part requiring entry of Ca2+ and activation of staurosporine sensitive kinase(s).


2015 ◽  
Vol 37 (6) ◽  
pp. 2393-2404 ◽  
Author(s):  
Antonella Fazio ◽  
Marilena Briglia ◽  
Caterina Faggio ◽  
Kousi Alzoubi ◽  
Florian Lang

Background/Aims: The alkylating drug oxaliplatin is widely used for chemotherapy of malignancy. Oxaliplatin is effective by inducing both, necrosis and apoptosis. Similar to necrosis or apoptosis of nucleated cells, erythrocytes may enter hemolysis, which is apparent from hemoglobin release or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and/or Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored, whether and how oxaliplatin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was quantified utilizing annexin-V-binding, cell volume estimated from forward scatter, hemolysis deduced from hemoglobin release, [Ca2+]i determined utilizing Fluo-3 fluorescence, and reactive oxygen species (ROS) abundance visualized using 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence. Results: A 48 hours exposure of human erythrocytes to oxaliplatin (10 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo-3 fluorescence, and significantly increased DCFDA fluorescence. The effect of oxaliplatin on annexin-V-binding and forward scatter was rather augmented by removal of extracellular Ca2+, but was significantly blunted in the presence of the antioxidant N-acetyl-cysteine (1 mM). Conclusions: Oxaliplatin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect partially dependent on ROS formation.


2017 ◽  
Vol 42 (4) ◽  
pp. 1575-1591 ◽  
Author(s):  
Abdulla Al Mamun Bhuyan ◽  
Hang Cao ◽  
Florian Lang

Background/Aims: The mammalian target of rapamycin (mTOR) inhibitor temsirolimus is utilized for the treatment of malignancy. Temsirolimus is at least in part effective by triggering suicidal tumor cell death. The most common side effect of temsirolimus treatment is anemia. At least in theory, the anemia following temsirolimus treatment could result from stimulation of eryptosis, the suicidal erythrocyte death. Hallmarks of eryptosis include cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the orchestration of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, as well as activation of staurosporine and chelerythrine sensitive protein kinase C, SB203580 sensitive p38 kinase, D4476 sensitive casein kinase 1, and zVAD sensitive caspases. The purpose of the present study was to test whether temsirolimus influences eryptosis and, if so, to shed light on the signaling involved. Methods: Flow cytometry was employed to estimate cell volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was determined from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to temsirolimus (5 – 20 µg/ml) significantly decreased forward scatter and significantly increased the percentage of annexin-V-binding cells. Temsirolimus significantly increased Fluo3-fluorescence, DCFDA fluorescence and ceramide abundance at the erythrocyte surface. The effect of temsirolimus on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+ and by addition of staurosporine (1 µM) or chelerythrine (10 µM) but not significantly modified by addition of SB203580 (2 µM), D4476 (10 µM), or zVAD (10 µM). Chelerythrine (10 µM) further significantly blunted the effect of temsirolimus on DCFDA fluorescence but not ceramide formation. Removal of extracellular Ca2+ had no effect on temsirolimus induced ROS formation or ceramide abundance. Conclusions: Temsirolimus triggers eryptosis with cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, oxidative stress, ceramide and activation of staurosporine/Chelerythrine sensitive kinase(s).


Sign in / Sign up

Export Citation Format

Share Document