scholarly journals On Retinal Gene Therapy

2016 ◽  
Vol 236 (1) ◽  
pp. 1-7 ◽  
Author(s):  
M. Dominik Fischer

Mutations in a large number of genes cause retinal degeneration and blindness with no cure currently available. Retinal gene therapy has evolved over the last decades to become a promising new treatment paradigm for these rare disorders. This article reflects on the ideas and concepts arising from basic science towards the translation of retinal gene therapy into the clinical realm. It describes the advances and present thinking on the efficacy of current clinical trials and discusses potential roadblocks and solutions for the future of retinal gene therapy.

Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 226-233
Author(s):  
Lindsey A. George

Abstract After 3 decades of clinical trials, repeated proof-of-concept success has now been demonstrated in hemophilia A and B gene therapy. Current clinical hemophilia gene therapy efforts are largely focused on the use of systemically administered recombinant adeno-associated viral (rAAV) vectors for F8 or F9 gene addition. With multiple ongoing trials, including licensing studies in hemophilia A and B, many are cautiously optimistic that the first AAV vectors will obtain regulatory approval within approximately 1 year. While supported optimism suggests that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized, a number of outstanding questions have emerged from clinical trial that are in need of answers to harness the full potential of gene therapy for hemophilia patients. This article reviews the use of AAV vector gene addition approaches for hemophilia A and B, focusing specifically on information to review in the process of obtaining informed consent for hemophilia patients prior to clinical trial enrollment or administering a licensed AAV vector.


Ophthalmology ◽  
2020 ◽  
Vol 127 (2) ◽  
pp. 148-150
Author(s):  
Mark E. Pennesi ◽  
Catherine L. Schlecther

2017 ◽  
Vol 11 ◽  
Author(s):  
G. Alex Ochakovski ◽  
K. Ulrich Bartz-Schmidt ◽  
M. Dominik Fischer

2015 ◽  
Vol 8 (1) ◽  
pp. 136-147
Author(s):  
John Foreman

The number of genes associated with renal disease is increasing every day and this has led to a clearer understanding of the pathophysiology of renal disease in many disorders. It is also appreciated now that a genetic mutation(s) underlie many renal syndromes. Genetic testing may also offer the possibility to diagnose some renal diseases without the need for a renal biopsy. It also allows the prenatal diagnosis of certain renal diseases in at risk fetuses or identification of potential renal disease before it has become manifest. Finally, identification of a specific gene mutation holds the possibility of correction though gene therapy in the future. It is increasingly clear that many renal disorders in pediatrics are a consequence of genetic mutations. In the future, genetic testing will become as easy and as common as ordering a serum creatinine today.


2020 ◽  
Vol 29 (14) ◽  
pp. 2337-2352
Author(s):  
Poppy Datta ◽  
Avri Ruffcorn ◽  
Seongjin Seo

Abstract Retinal degeneration is a common clinical feature of ciliopathies, a group of genetic diseases linked to ciliary dysfunction, and gene therapy is an attractive treatment option to prevent vision loss. Although the efficacy of retinal gene therapy is well established by multiple proof-of-concept preclinical studies, its long-term effect, particularly when treatments are given at advanced disease stages, is controversial. Incomplete treatment and intrinsic variability of gene delivery methods may contribute to the variable outcomes. Here, we used a genetic rescue approach to ‘optimally’ treat retinal degeneration at various disease stages and examined the long-term efficacy of gene therapy in a mouse model of ciliopathy. We used a Bardet–Biedl syndrome type 17 (BBS17) mouse model, in which the gene-trap that suppresses Bbs17 (also known as Lztfl1) expression can be removed by tamoxifen administration, restoring normal gene expression systemically. Our data indicate that therapeutic effects of retinal gene therapy decrease gradually as treatments are given at later stages. These results suggest the presence of limited time window for successful gene therapy in certain retinal degenerations. Our study also implies that the long-term efficacy of retinal gene therapy may depend on not only the timing of treatment but also other factors such as the function of mutated genes and residual activities of mutant alleles.


2017 ◽  
Vol 28 (11) ◽  
pp. 982-987 ◽  
Author(s):  
Alberto Auricchio ◽  
Alexander J. Smith ◽  
Robin R. Ali

Sign in / Sign up

Export Citation Format

Share Document