Retinal Gene Therapy: Expansion in Clinical Trials Drives the Need for Further Preclinical Research

2020 ◽  
Vol 31 (13-14) ◽  
pp. 701-702
Author(s):  
Robin R. Ali
Ophthalmology ◽  
2020 ◽  
Vol 127 (2) ◽  
pp. 148-150
Author(s):  
Mark E. Pennesi ◽  
Catherine L. Schlecther

2017 ◽  
Vol 11 ◽  
Author(s):  
G. Alex Ochakovski ◽  
K. Ulrich Bartz-Schmidt ◽  
M. Dominik Fischer

2016 ◽  
Vol 236 (1) ◽  
pp. 1-7 ◽  
Author(s):  
M. Dominik Fischer

Mutations in a large number of genes cause retinal degeneration and blindness with no cure currently available. Retinal gene therapy has evolved over the last decades to become a promising new treatment paradigm for these rare disorders. This article reflects on the ideas and concepts arising from basic science towards the translation of retinal gene therapy into the clinical realm. It describes the advances and present thinking on the efficacy of current clinical trials and discusses potential roadblocks and solutions for the future of retinal gene therapy.


2013 ◽  
Vol 13 (8) ◽  
pp. 1314-1330 ◽  
Author(s):  
E. Drakopoulou ◽  
E. Papanikolaou ◽  
M. Georgomanoli ◽  
N. Anagnou
Keyword(s):  

Leukemia ◽  
2021 ◽  
Author(s):  
Nanni Schmitt ◽  
Johann-Christoph Jann ◽  
Eva Altrock ◽  
Johanna Flach ◽  
Justine Danner ◽  
...  

AbstractPreclinical research of myelodysplastic syndromes (MDSs) is hampered by a lack of feasible disease models. Previously, we have established a robust patient-derived xenograft (PDX) model for MDS. Here we demonstrate for the first time that this model is applicable as a preclinical platform to address pending clinical questions by interrogating the efficacy and safety of the thrombopoietin receptor agonist eltrombopag. Our preclinical study included n = 49 xenografts generated from n = 9 MDS patient samples. Substance efficacy was evidenced by FACS-based human platelet quantification and clonal bone marrow evolution was reconstructed by serial whole-exome sequencing of the PDX samples. In contrast to clinical trials in humans, this experimental setup allowed vehicle- and replicate-controlled analyses on a patient–individual level deciphering substance-specific effects from natural disease progression. We found that eltrombopag effectively stimulated thrombopoiesis in MDS PDX without adversely affecting the patients’ clonal composition. In conclusion, our MDS PDX model is a useful tool for testing new therapeutic concepts in MDS preceding clinical trials.


2019 ◽  
Vol 24 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Daniel Eisenman

Introduction: A dramatic increase in the number of clinical trials involving gene-modified cell therapy and gene therapy is taking place. The field is on the verge of a boom, and the regulatory environment is evolving to accommodate the growth. Discussion: This commentary summarizes the current state of the field, including an overview of the growth. The United States (US) regulatory structure for gene therapy will be summarized, and the evolution of the oversight structure will be explained. Conclusion: The gene therapy field has recently produced its first FDA-approved therapeutics and has a pipeline of other investigational products in the final stages of clinical trials before they can be evaluated by the FDA as safe and effective therapeutics. As research continues to evolve, so must the oversight structure. Biosafety professionals and IBCs have always played key roles in contributing to the safe, evidence-based advancement of gene therapy research. With the recent regulatory changes and current surge in gene therapy research, the importance of those roles has increased dramatically.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sara E. Ratican ◽  
Andrew Osborne ◽  
Keith R. Martin

The eye is at the forefront of the application of gene therapy techniques to medicine. In the United States, a gene therapy treatment for Leber’s congenital amaurosis, a rare inherited retinal disease, recently became the first gene therapy to be approved by the FDA for the treatment of disease caused by mutations in a specific gene. Phase III clinical trials of gene therapy for other single-gene defect diseases of the retina and optic nerve are also currently underway. However, for optic nerve diseases not caused by single-gene defects, gene therapy strategies are likely to focus on slowing or preventing neuronal death through the expression of neuroprotective agents. In addition to these strategies, there has also been recent interest in the potential use of precise genome editing techniques to treat ocular disease. This review focuses on recent developments in gene therapy techniques for the treatment of glaucoma and Leber’s hereditary optic neuropathy (LHON). We discuss recent successes in clinical trials for the treatment of LHON using gene supplementation therapy, promising neuroprotective strategies that have been employed in animal models of glaucoma and the potential use of genome editing techniques in treating optic nerve disease.


2015 ◽  
Vol 25 (R1) ◽  
pp. R9-R17 ◽  
Author(s):  
Niclas E. Bengtsson ◽  
Jane T. Seto ◽  
John K. Hall ◽  
Jeffrey S. Chamberlain ◽  
Guy L. Odom

2021 ◽  
Author(s):  
Moataz Dowaidar

Except in human clinical trials, preclinical tests showed the potential of Salmonella bacteria for tumor therapy. There are still various challenges to tackle before salmonella bacteria may be employed to treat human cancer. Due to its pathogenic nature, attenuation is essential to minimize the host's harmful effects of bacterial infection. Loss of anticancer efficacy from bacterial virulence attenuation can be compensated by giving therapeutic payloads to microorganisms. Bacteria can also be linked to micro-or nanomaterials with diverse properties, such as drug-loaded, photocatalytic and/or magnetic-sensing nanoparticles, using the net negative charge of the bacteria. Combining bacteria-mediated cancer treatment with other medicines that have been clinically shown to be helpful but have limits may provide surprising therapeutic results. Recently, this strategy has received attention and is underway. The use of live germs for cancer treatment has not yet been approved for human clinical trials. The non-invasive oral form of administration benefits from safety, making it more suitable for clinical cancer patients.Infection of live germs through systemic means, on the other hand, involves toxicity risk. Although Salmonella bacteria can be genetically manipulated with high tumor targeting, harm to normal tissues can not be excluded when medications with nonspecific toxicity are administered. It is preferred if the action of selected drugs may be restricted to the tumor site rather than healthy tissues, thereby boosting cancer therapy safety. In recent years, many regulatory mechanisms have been developed to manage pharmaceutical distribution through live bacterial vectors. Engineered salmonella can accumulate 1000 times greater than normal tissue density in the tumor. The QS-regulated mechanism, which initiates gene expression when bacterial density exceeds a particular threshold level, also promises Salmonella bacteria for targeted medication delivery. Nanovesicle structures of Salmonella bacteria can also be used as biocompatible nanocarriers to deliver functional medicinal chemicals in cancer therapy. Surface-modified nanovesicles preferably attach to tumor cells and are swallowed by receptor-mediated endocytosis before being destroyed to release packed drugs. The xenograft methodology, which comprises the implantation of cultivated tumor cell lines into immunodeficient mice, has often been used in preclinical research revealing favorable results about the anticancer effects of genetically engineered salmonella.


Sign in / Sign up

Export Citation Format

Share Document