Long-Term Anesthetic-Dependent Hypoactivity after Repetitive Mild Traumatic Brain Injuries in Adolescent Mice

2016 ◽  
Vol 38 (3) ◽  
pp. 220-238 ◽  
Author(s):  
Bridgette D. Semple ◽  
Raha Sadjadi ◽  
Jaclyn Carlson ◽  
Yiran Chen ◽  
Duan Xu ◽  
...  

Recent evidence supports the hypothesis that repetitive mild traumatic brain injuries (rmTBIs) culminate in neurological impairments and chronic neurodegeneration, which have wide-ranging implications for patient management and return-to-play decisions for athletes. Adolescents show a high prevalence of sports-related head injuries and may be particularly vulnerable to rmTBIs due to ongoing brain maturation. However, it remains unclear whether rmTBIs, below the threshold for acute neuronal injury or symptomology, influence long-term outcomes. To address this issue, we first defined a very mild injury in adolescent mice (postnatal day 35) as evidenced by an increase in Iba-1- labeled microglia in white matter in the acutely injured brain, in the absence of indices of cell death, axonal injury, and vasogenic edema. Using this level of injury severity and Avertin (2,2,2-tribromoethanol) as the anesthetic, we compared mice subjected to either a single mTBI or 2 rmTBIs, each separated by 48 h. Neurobehavioral assessments were conducted at 1 week and at 1 and 3 months postimpact. Mice subjected to rmTBIs showed transient anxiety and persistent and pronounced hypoactivity compared to sham control mice, alongside normal sensorimotor, cognitive, social, and emotional function. As isoflurane is more commonly used than Avertin in animal models of TBI, we next examined long-term outcomes after rmTBIs in mice that were anesthetized with this agent. However, there was no evidence of abnormal behaviors even with the addition of a third rmTBI. To determine whether isoflurane may be neuroprotective, we compared the acute pathology after a single mTBI in mice anesthetized with either Avertin or isoflurane. Pathological findings were more pronounced in the group exposed to Avertin compared to the isoflurane group. These collective findings reveal distinct behavioral phenotypes (transient anxiety and prolonged hypoactivity) that emerge in response to rmTBIs. Our findings further suggest that selected anesthetics may confer early neuroprotection after rmTBIs, and as such mask long-term abnormal phenotypes that may otherwise emerge as a consequence of acute pathogenesis.

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Alice Bittar ◽  
Nemil Bhatt ◽  
Tasneem F Hasan ◽  
Mauro Montalbano ◽  
Nicha Puangmalai ◽  
...  

Abstract Mild traumatic brain injury accounts for the majority of head injuries and has been correlated with neurodegeneration and dementia. While repetitive mild traumatic brain injury is highly correlated to neurodegeneration, the correlation of a single mild traumatic brain injury with neurodegeneration is still unclear. Because tau aggregates are the main form of mild traumatic brain injury induced pathology, toxic forms of tau protein most likely play a role in the development of post-mild traumatic brain injury neurodegeneration. Therefore, it becomes crucial to characterize the properties of soluble tau aggregates in single versus repetitive mild traumatic brain injury. Herein, we isolated tau oligomers from wild-type mice exposed to single or repetitive mild traumatic brain injury and characterized the tau aggregates at functional, biochemical and biophysical levels. We demonstrated that single versus repetitive mild traumatic brain injuries frequencies lead to the formation of different tau oligomeric polymorphisms. These polymorphisms express different long-term potentiation impairment potencies, toxicity potentials, morphologies and strain indicating properties. To our knowledge, this is the first evidence that soluble tau oligomers derived from single versus repetitive mild traumatic brain injuries form distinct polymorphisms that possibly correlate with the risk of neurodegeneration after mild traumatic brain injury.


Author(s):  
Kathleen Bachynski

Contemporary debates over head injuries in youth football are at a crossroads, with competing framings of the risks of traumatic brain injuries resulting in significantly different potential responses to addressing the sport’s risks. The prevailing framework, shaped in many ways by the NFL and other sports organizations, suggests that improved adult supervision, return-to-play guidelines, better helmet design, and other similar strategies can sufficiently address the risks of youth football. An alternative interpretation of the scientific evidence on sub-concussive hits, however, indicates that the full-body collisions associated with tackling carry inherent risks of brain trauma that cannot be substantially reduced. The cultural values and meanings attached to youth football inform these contemporary debates, as well as the possible future of America’s most popular sport.


2016 ◽  
Vol 12 (2) ◽  
pp. 63-66
Author(s):  
Bal G Karmacharya ◽  
Brijesh Sathian

The objective of this study was to review the demographics, causes injury, severity, treatment and outcome of traumatic brain injuries in victims of the April 2015 earthquake who were admitted in Manipal Teaching Hospital, Pokhara. A total of 37 patients was admitted under Neurosurgery Services. Collapse of buildings was the commonest cause of head injury. The majority of them had mild head injury. Associated injuries to other parts of the body were present in 40.54% patients.Nepal Journal of Neuroscience 12:63-66, 2015


2021 ◽  
Vol 14 ◽  
Author(s):  
Supriya Mishra ◽  
Vikram Jeet Singh ◽  
Pooja A Chawla ◽  
Viney Chawla

Background: Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. Aims: The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. Methods: This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. Results: The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. Conclusion: Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.


Sign in / Sign up

Export Citation Format

Share Document