scholarly journals Mechanisms Underlying Endothelin-1 Level Elevations Caused by Excessive Fluoride Exposure

2016 ◽  
Vol 40 (5) ◽  
pp. 861-873 ◽  
Author(s):  
Liyan Sun ◽  
Yanhui Gao ◽  
Wei Zhang ◽  
Xiaona Liu ◽  
Bingyun Li ◽  
...  

Objective: To explore the mechanisms underlying endothelin-1 (ET-1) elevations induced by excessive fluoride exposure. Methods: We measured serum and bone fluoride ion content and plasma ET-1 levels and compared these parameters among different groups in an animal model. We also observed morphological changes in the aorta and endothelium of rabbits. In cell experiments, human umbilical vein endothelial cells (HUVECs) were treated with varying concentrations of NaF for 24h, with or without 10 µM U0126 pretreatment for 1 h. ET-1 levels in culture fluid and intracellular reactive oxygen species (ROS) levels, as well as ET1 gene, endothelin-converting enzyme-1 (ECE-1), extracellular signal-regulating kinase 1/2 (ERK1/2), pERK1/2 expression levels and RAS activation were measured and compared among the groups. Results: Plasma ET-1 levels of rabbits increased significantly in fluorinated groups compared with those in the control group. The rabbit thoracic aortas became slightly hardened in fluorinated groups compared with those in the control group, and some vacuoles were present in the endothelial cell cytoplasm of the rabbits in fluorinated groups. In our cell experiments, ET1 gene and ECE-1 expression levels in HUVECs and ET-1 expression levels in the cell culture supernatants increased significantly in some experimental groups compared with those in the control group. These trends paralleled the changes in intracellular ROS levels, RAS activation, and the pERK1/2-to-ERK1/2 ratio. After U0126 was added, ECE-1 expression and ET-1 levels decreased significantly. Conclusion: Excessive fluoride exposure leads to characteristic endothelial damage (vacuoles), thoracic aorta hardening, and plasma ET-1 level elevations in rabbits. In addition, the ROS-RAS-MEK1/2-pERK1/2/ERK1/2 pathway plays a crucial—and at least partial—role in ET-1 over-expression, which is promoted by excessive fluoride exposure.

2018 ◽  
Vol 52 (3) ◽  
pp. 123-127 ◽  
Author(s):  
Farhad Ghadiri Soufi ◽  
Ali Akbar Poursadegh Zonouzi ◽  
Ebrahim Eftekhar ◽  
Kamila Kamali ◽  
Sara Aghakhani Chegeni ◽  
...  

AbstractObjectives. It has been shown that dysregulation of miRNAs expression contributes to the pathogenesis and progression of the diabetes and diabetes-related complications. Drosha, DGCR8, Dicer, and Ago-2 are involved in the miRNA maturation. The aim of the present study was to investigate the mRNA expression levels of these genes in the human umbilical vein endothelial cells (HUVECs) under hyperglycemic condition.Methods. HUVECs were cultured in normo-(5 mM) and hyperglycemic (25 mM) conditions for 24 h. As osmotic control, cells were treated with D-mannitol (25 mM, for 24 h). The mRNA expression levels of Drosha, DGCR8, Dicer and Ago-2 were evaluated using quantitative real-time PCR.Results. The expression level of Drosha, DGCR8, Dicer, and Ago-2 were increased in hyperglycemic HUVECs compared to the control group.Conclusion. Our results show that under hyperglycemic condition, expression of genes involved in the miRNA maturation was significantly increased in HUVECs. Upregulation of these genes may have role in diabetic complications through the dysregulation of the miRNA expression.


2021 ◽  
Vol 22 (4) ◽  
pp. 1828
Author(s):  
Seo Young Kwak ◽  
Sunhoo Park ◽  
Hyewon Kim ◽  
Sun-Joo Lee ◽  
Won-Suk Jang ◽  
...  

Intestinal injury is observed in cancer patients after radiotherapy and in individuals exposed to radiation after a nuclear accident. Radiation disrupts normal vascular homeostasis in the gastrointestinal system by inducing endothelial damage and senescence. Despite advances in medical technology, the toxicity of radiation to healthy tissue remains an issue. To address this issue, we investigated the effect of atorvastatin, a commonly prescribed hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor of cholesterol synthesis, on radiation-induced enteropathy and inflammatory responses. We selected atorvastatin based on its pleiotropic anti-fibrotic and anti-inflammatory effects. We found that atorvastatin mitigated radiation-induced endothelial damage by regulating plasminogen activator inhibitor-1 (PAI-1) using human umbilical vein endothelial cells (HUVECs) and mouse model. PAI-1 secreted by HUVECs contributed to endothelial dysfunction and trans-endothelial monocyte migration after radiation exposure. We observed that PAI-1 production and secretion was inhibited by atorvastatin in irradiated HUVECs and radiation-induced enteropathy mouse model. More specifically, atorvastatin inhibited PAI-1 production following radiation through the JNK/c-Jun signaling pathway. Together, our findings suggest that atorvastatin alleviates radiation-induced enteropathy and supports the investigation of atorvastatin as a radio-mitigator in patients receiving radiotherapy.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 366
Author(s):  
Jaromír Vašíček ◽  
Andrej Baláži ◽  
Miroslav Bauer ◽  
Andrea Svoradová ◽  
Mária Tirpáková ◽  
...  

Endothelial progenitor cells (EPCs) have been broadly studied for several years due to their outstanding regenerative potential. Moreover, these cells might be a valuable source of genetic information for the preservation of endangered animal species. However, a controversy regarding their characterization still exists. The aim of this study was to isolate and compare the rabbit peripheral blood- and bone marrow-derived EPCs with human umbilical vein endothelial cells (HUVECs) in terms of their phenotype and morphology that could be affected by the passage number or cryopreservation as well as to assess their possible neuro-differentiation potential. Briefly, cells were isolated and cultured under standard endothelial conditions until passage 3. The morphological changes during the culture were monitored and each passage was analyzed for the typical phenotype using flow cytometry, quantitative real–time polymerase chain reaction (qPCR) and novel digital droplet PCR (ddPCR), and compared to HUVECs. The neurogenic differentiation was induced using a commercial kit. Rabbit cells were also cryopreserved for at least 3 months and then analyzed after thawing. According to the obtained results, both rabbit EPCs exhibit a spindle-shaped morphology and high proliferation rate. The both cell lines possess same stable phenotype: CD14-CD29+CD31-CD34-CD44+CD45-CD49f+CD73+CD90+CD105+CD133-CD146-CD166+VE-cadherin+VEGFR-2+SSEA-4+MSCA-1-vWF+eNOS+AcLDL+ALDH+vimentin+desmin+α-SMA+, slightly different from HUVECs. Moreover, both induced rabbit EPCs exhibit neuron-like morphological changes and expression of neuronal markers ENO2 and MAP2. In addition, cryopreserved rabbit cells maintained high viability (>85%) and endothelial phenotype after thawing. In conclusion, our findings suggest that cells expanded from the rabbit peripheral blood and bone marrow are of the endothelial origin with a stable marker expression and interesting proliferation and differentiation capacity.


2002 ◽  
Vol 115 (12) ◽  
pp. 2475-2484 ◽  
Author(s):  
Valérie Vouret-Craviari ◽  
Christine Bourcier ◽  
Etienne Boulter ◽  
Ellen Van Obberghen-Schilling

Soluble mediators such as thrombin and sphingosine-1-phosphate regulate morphological changes in endothelial cells that affect vascular permeability and new blood vessel formation. Although these ligands activate a similar set of heterotrimeric G proteins, thrombin causes cell contraction and rounding whereas sphingosine-1-phosphate induces cell spreading and migration. A functional requirement for Rho family GTPases in the cytoskeletal responses to both ligands has been established, yet the dynamics of their regulation and additional signaling mechanisms that lead to such opposite effects remain poorly understood. Using a pull-down assay to monitor the activity of Rho GTPases in human umbilical vein endothelial cells, we find significant temporal and quantitative differences in RhoA and Rac1 activation. High levels of active RhoA rapidly accumulate in cells in response to thrombin whereas Rac1 is inhibited. In contrast, sphingosine-1-phosphate addition leads to comparatively weak and delayed activation of RhoA and it activates Rac1. In addition, we show here that sphingosine-1-phosphate treatment activates a Src family kinase and triggers recruitment of the F-actin-binding protein cortactin to sites of actin polymerization at the rim of membrane ruffles. Both Src and Rac pathways are essential for lamellipodia targeting of cortactin. Further, Src plays a determinant role in sphingosine-1-phosphate-induced cell spreading and migration. Taken together these data demonstrate that the thrombin-induced contractile and immobile phenotype in endothelial cells reflects both robust RhoA activation and Rac inhibition, whereas Src- and Rac-dependent events couple sphingosine-1-phosphate receptors to the actin polymerizing machinery that drives the extension of lamellipodia and cell migration.


2002 ◽  
Vol 282 (6) ◽  
pp. H2066-H2075 ◽  
Author(s):  
Guohao Dai ◽  
Olga Tsukurov ◽  
Michael Chen ◽  
Jonathan P. Gertler ◽  
Roger D. Kamm

External pneumatic compression (EPC) is effective in preventing deep vein thrombosis (DVT) and is thought to alter endothelial thromboresistant properties. We investigated the effect of EPC on changes in nitric oxide (NO), a critical mediator in the regulation of vasomotor and platelet function. An in vitro cell culture system was developed to simulate flow and vessel collapse conditions under EPC. Human umbilical vein endothelial cells were cultured and subjected to tube compression (C), pulsatile flow (F), or a combination of the two (FC). NO production and endothelial nitric oxide synthase (eNOS) mRNA expression were measured. The data demonstrate that in the F and FC groups, there is a rapid release of NO followed by a sustained increase. NO production levels in the F and FC groups were almost identical, whereas the C group produced the same low amount of NO as the control group. Conditions F and FC also upregulate eNOS mRNA expression by a factor of 2.08 ± 0.25 and 2.11 ± 0.21, respectively, at 6 h. Experiments with different modes of EPC show that NO production and eNOS mRNA expression respond to different time cycles of compression. These results implicate enhanced NO release as a potentially important factor in the prevention of DVT.


Sign in / Sign up

Export Citation Format

Share Document