scholarly journals Consumption of a Mango Fruit Powder Protects Mice from High-Fat Induced Insulin Resistance and Hepatic Fat Accumulation

2017 ◽  
Vol 42 (2) ◽  
pp. 564-578 ◽  
Author(s):  
Agustín G. Sabater ◽  
Joan Ribot ◽  
Teresa Priego ◽  
Itxaso Vazquez ◽  
Sonja Frank ◽  
...  

Background/Aims: The aim of this study was to gain more insight into the beneficial effects of mango fruit powder on the early metabolic adverse effects of a high-fat diet. Methods: The progressive dose-response effects of mango fruit powder on body composition, circulating parameters, and the expression of genes related to fatty acid oxidation and insulin sensitivity in key tissues were studied in mice fed a moderate (45%) high-fat diet. Results: Findings suggest that mango fruit powder exerts physiological protective effects in the initial steps of insulin resistance and hepatic lipid accumulation induced by a high-fat diet in mice. Moreover, AMPK and SIRT1 appear as key regulators of the observed improvement in fatty acid oxidation capacity, as well as of the improved insulin sensitivity and the increased glucose uptake and metabolism through the glycolytic pathway capacity in liver and skeletal muscle. Conclusion: In summary, this study provides evidence that the functional food ingredient (CarelessTM) from mango fruit prevents early metabolic alterations caused by a high-fat diet in the initial stages of the metabolic syndrome.

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Dan Shao ◽  
Nathan Roe ◽  
Loreta D Tomasi ◽  
Alyssa N Braun ◽  
Ana Mattos ◽  
...  

In the obese and diabetic heart, an imbalance between fatty acid uptake and fatty acid oxidation (FAO) promotes the development of cardiac lipotoxicity. We previously showed that cardiac specific deletion of acetyl CoA carboxylase 2 (ACC2) was effective in increasing myocardial FAO while maintaining normal cardiac function and energetics. In this study, we tested the hypothesis that ACC2 deletion in an adult heart would prevent the cardiac lipotoxic phenotype in a mouse model of diet-induced obesity. ACC2 flox/flox (CON) and ACC2 flox/flox-MerCreMer+ (iKO) after tamoxifen injection were subjected to a high fat diet (HFD) for 24 weeks. HFD induced similar body weight gain and glucose intolerance in CON and iKO. In isolated Langendorff-perfused heart experiments, HFD feeding increased FAO 1.6-fold in CON mice which was increased to 2.5-fold in iKO mice compared with CON on chow diet. Fractional shortening was significantly decreased in CON-HFD (32.8±2.8% vs. 39.2±3.2%, p< 0.05, n=5-6), but preserved in iKO-HFD mice (42.8±2.3%, vs. 38.5±1.4%, n=6), compared to respective chow fed controls. Diastolic function, assessed by E’/A’ ratio using tissue Doppler imaging, was significantly decreased in CON-HFD mice (1.11±0.08 vs. 0.91±0.09, p<0.05 n=5-6), while no difference was observed in iKO-HFD compared to iKO-chow (1.10±0.03 vs. 1.09±0.04, n=6). Heart weight /Tibia length ratio was significantly higher in CON than iKO mice after HFD feeding (7.19±0.22 vs. 6.47±0.28, p<0.05, n=6). Furthermore, HFD induced mitochondria super complex II, III and V instability, which was attenuated in iKO-HFD mice. These data indicate that elevated myocardial FAO per se does not cause the development of cardiac dysfunction in obese animals. In fact, enhancing FAO via ACC2 deletion prevents HFD induced cardiac dysfunction and attenuates pathological hypertrophy. These effects may be mediated, in part, by maintenance of mitochondrial integrity. Taken together, our findings suggest that promoting cardiac FAO is an effective strategy to resist the development of cardiac lipotoxicity during diet-induced obesity.


Obesity Facts ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 455-472
Author(s):  
Kang Song ◽  
Yifan Zhang ◽  
Qin Ga ◽  
Zhenzhong Bai ◽  
Ri-Li Ge

<b><i>Background:</i></b> This study aimed to investigate whether and how high altitude-associated ambient hypoxia affects insulin sensitivity in mice fed a high-fat diet (HFD). <b><i>Methods:</i></b> Mice were randomly divided into a control group (with normal diet feeding and low-altitude housing), LA/HFD group (with HFD feeding and low-altitude housing), and HA/HFD group (with HFD feeding and high-altitude housing). <b><i>Results:</i></b> After 8 weeks, mice in the HA/HFD group showed improved insulin sensitivity-related indices compared with the LA/HFD group. In mice residing in a low-altitude region, HFD significantly impaired mitochondrial respiratory function and mitochondrial DNA content in skeletal muscles, which was partially reversed in mice in the HA/HFD group. In addition, the fatty acid oxidation-related enzyme gene <i>CPT1</i> (carnitine palmitoyltransferase 1) and genes related to mitochondrial biogenesis such as peroxisome proliferator-activated receptor-γ coactivator-1α (<i>PGC-1α</i>), nuclear respiratory factor 1 (<i>NRF1</i>), and mitochondrial transcription factor A (<i>Tfam</i>) were upregulated in the skeletal muscles of mice housed at high altitude, in comparison to in the LA/HFD group. Furthermore, AMPK (adenosine monophosphate-activated protein kinase) signaling was activated in the skeletal muscles, as evidenced by a higher expression of phosphorylated AMPK (p-AMPK) and protein kinase B (p-AKT) in the HA/HFD group than in the LA/HFD group. <b><i>Conclusion:</i></b> Our study suggests that high-altitude hypoxia improves insulin sensitivity in mice fed an HFD, which is associated with AMPK activation in the skeletal muscle and consequently enhanced mitochondrial biogenesis and fatty acid oxidation. This work provides a molecular explanation for why high altitude is associated with a reduced incidence of insulin resistance in the obese population.


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1508-1516 ◽  
Author(s):  
David Patsouris ◽  
Janardan K. Reddy ◽  
Michael Müller ◽  
Sander Kersten

Peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of numerous metabolic processes. The PPARα isotype is abundant in liver and activated by fasting. However, it is not very clear what other nutritional conditions activate PPARα. To examine whether PPARα mediates the effects of chronic high-fat feeding, wild-type and PPARα null mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 26 wk. HFD and PPARα deletion independently increased liver triglycerides. Furthermore, in wild-type mice HFD was associated with a significant increase in hepatic PPARα mRNA and plasma free fatty acids, leading to a PPARα-dependent increase in expression of PPARα marker genes CYP4A10 and CYP4A14. Microarray analysis revealed that HFD increased hepatic expression of characteristic PPARα target genes involved in fatty acid oxidation in a PPARα-dependent manner, although to a lesser extent than fasting or Wy14643. Microarray analysis also indicated functional compensation for PPARα in PPARα null mice. Remarkably, in PPARα null mice on HFD, PPARγ mRNA was 20-fold elevated compared with wild-type mice fed a LFD, reaching expression levels of PPARα in normal mice. Adenoviral overexpression of PPARγ in liver indicated that PPARγ can up-regulate genes involved in lipo/adipogenesis but also characteristic PPARα targets involved in fatty acid oxidation. It is concluded that 1) PPARα and PPARα-signaling are activated in liver by chronic high-fat feeding; and 2) PPARγ may compensate for PPARα in PPARα null mice on HFD.


2010 ◽  
Vol 298 (3) ◽  
pp. E652-E662 ◽  
Author(s):  
Akira Shimotoyodome ◽  
Junko Suzuki ◽  
Daisuke Fukuoka ◽  
Ichiro Tokimitsu ◽  
Tadashi Hase

Chemically modified starches (CMS) are RS4-type resistant starch, which shows a reduced availability, as well as high-amylose corn starch (HACS, RS2 type), compared with the corresponding unmodified starch. Previous studies have shown that RS4 increases fecal excretion of bile acids and reduces zinc and iron absorption in rats. The aim of this study was to investigate the effects of dietary RS4 supplementation on the development of diet-induced obesity in mice. Weight- and age-matched male C57BL/6J mice were fed for 24 wk on a high-fat diet containing unmodified starch, hydroxypropylated distarch phosphate (RS4), or HACS (RS2). Those fed the RS4 diet had significantly lower body weight and visceral fat weight than those fed either unmodified starch or the RS2 diet. Those fed the RS4 diet for 4 wk had a significantly higher hepatic fatty acid oxidation capacity and related gene expression and lower blood insulin than those fed either unmodified starch or the RS2 diet. Indirect calorimetry showed that the RS4 group exhibited higher energy expenditure and fat utilization compared with the RS2 group. When gavaged with fat (trioleate), RS4 stimulated a lower postprandial glucose-dependent insulinotropic polypeptide (GIP; incretin) response than RS2. Higher blood GIP levels induced by chronic GIP administration reduced fat utilization in high-fat diet-fed mice. In conclusion, dietary supplementation with RS4-type resistant starch attenuates high-fat diet-induced obesity more effectively than RS2 in C57BL/6J mice, which may be attributable to lower postprandial GIP and increased fat catabolism in the liver.


2014 ◽  
Vol 307 (3) ◽  
pp. R332-R339 ◽  
Author(s):  
Jieyun Yin ◽  
Jian Kuang ◽  
Manisha Chandalia ◽  
Demidmaa Tuvdendorj ◽  
Batbayar Tumurbaatar ◽  
...  

The aim of this study was to investigate effects and mechanisms of electroacupuncture (EA) on blood glucose and insulin sensitivity in mice fed a high-fat diet. Both wild-type (WT) and adipose ectonucleotide pyrophosphate phosphodiesterase (ENPP1) transgenic (TG) mice were fed a high-fat diet for 12 wk; for each mouse, an intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) were performed with or without EA at abdomen or auricular areas. A high-fat diet-induced insulin resistance in both WT and TG mice. In the WT mice, EA at 3 Hz and 15 Hz, but not at 1 Hz or 100 Hz, via CV4+CV12 significantly reduced postprandial glucose levels; EA at 3 Hz was most potent. The glucose level was reduced by 61.7% at 60 min and 74.5% at 120 min with EA at 3 Hz (all P < 0.001 vs. control). Similar hypoglycemic effect was noted in the TG mice. On the contrary, EA at auricular points increased postprandial glucose level ( P < 0.03). 4). EA at 3 Hz via CV4+CV12 significantly enhanced the decrease of blood glucose after insulin injection, suggesting improvement of insulin sensitivity. Plasma free fatty acid was significantly suppressed by 42.5% at 15 min and 50.8% at 30 min with EA ( P < 0.01) in both WT and TG mice. EA improves glucose tolerance in both WT and TG mice fed a high-fat diet, and the effect is associated with stimulation parameters and acupoints and is probably attributed to the reduction of free fatty acid.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Sang R Lee ◽  
Eui-ju Hong

Abstract Diabetic cardiomyopathy (DCM) is one of the complications triggered by type II diabetes (T2D) (1). When free fatty acids (FFA) are abundant in insulin resistant pre-diabetic patients because of adipose lipolysis, FFA tends to move toward heart (2). Lipid accumulation can cause cardiac lipotoxicity and exacerbate DCM (3). In previous study, Pgrmc1 has been identified to associate with fatty acid synthesis (4). Therefore, we assumed that Pgrmc1 will associate with DCM. By feeding high-fat diet for 8 weeks and injecting streptozotocin (30mg/kg), T2D and DCM were induced. The lipid accumulation was exacerbated in T2D-induced Pgrmc1 KO heart, and FFA level was also high. Levels of lipid metabolic genes showed the tendency for lipid accumulation and lipotoxicity, and glycolysis was induced in T2D-induced Pgrmc1 KO heart. Though glycolysis presents higher efficiency for energy production in cardiomyopathy (5), it did not compensate the impairment of mitochondrial respiration in Pgrmc1 KO heart. High-fat diet and streptozotocin could not be the interfering factors, because suppression of fatty acid oxidation, induction of glycolysis, and impairment of mitochondrial respiration were observed similarly in post-prandial mice which were fed with normal chow. Insulin was excluded for interfering factor as cell line with serum starvation showed mitochondrial suppression and glycolytic induction in flux analyzer analysis in Pgrmc1 knockdown. Conversely, induction of fatty acid oxidation and suppression of glycolysis were observed in 72 h fasting of Pgrmc1 KO heart, suggesting the nutrition is closely associated with the metabolic modulation of Pgrmc1 on heart. This metabolic phenotype of Pgrmc1 KO heart consequently exacerbated DCM by showing high levels of fibrosis, inflammation, endoplasmic reticulum stress, and oxidative stress. References: (1) Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circulation research. 2018;122:624-38. (2) Noll C, Carpentier AC. Dietary fatty acid metabolism in prediabetes. Current opinion in lipidology. 2017;28:1-10. (3) Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell metabolism. 2012;15:805-12. (4) Lee SR, Kwon SW, Kaya P, Lee YH, Lee JG, Kim G, et al. Loss of progesterone receptor membrane component 1 promotes hepatic steatosis via the induced de novo lipogenesis. Scientific reports. 2018;8:15711. (5) Nagoshi T, Yoshimura M, Rosano GM, Lopaschuk GD, Mochizuki S. Optimization of cardiac metabolism in heart failure. Current pharmaceutical design. 2011;17:3846-53.


Sign in / Sign up

Export Citation Format

Share Document