scholarly journals LINC00037 Inhibits Proliferation of Renal Cell Carcinoma Cells in an Epidermal Growth Factor Receptor-Dependent Way

2018 ◽  
Vol 45 (2) ◽  
pp. 523-536 ◽  
Author(s):  
Xiaohui Gong ◽  
Xianjin Du ◽  
Yong Xu ◽  
Wenze Zheng

Background/Aims: LINC00037 has previously been reported to be up-regulated in clear cell renal cell carcinoma (ccRCC), however, the underlying mechanism remained unknown. In this study, we designed to investigate the functional role of LINC00037 in ccRCC Methods: LINC00037 knockdown and re-expressing 786-O and A498 cells were established. CCK8 assay and EdU assay were performed to evaluate the proliferation rates of ccRCC cells. Flow cytometry assay was performed to detect the cell apoptosis and cell cycle. Subcutaneous injection xenotransplantation mouse model was used to observe the role of LINC00037 in tumor growth in vivo. Mass spectrometry (MS) was performed to find the interacting partner of LINC00037 and RNA immunoprecipitation (RIP) was carried out to validate their interaction. Results: We found that knockdown of LINC00037 resulted in inhibited cell proliferation with activated apoptosis and cell cycle arrest in vitro. Over-expression of LINC00037 in LINC00037 knockdown cells restored and enhanced cell proliferation. In vivo mouse model indicated reduced tumor progression by LINC00037 depletion and promoted tumor progression by LINC00037 overexpression. LINC00037 could bind to epidermal growth factor receptor (EGFR) and increase the protein level of EGFR. Conclusion: LINC00037 could inhibit proliferation of ccRCC in an epidermal growth factor receptor-dependent way.

2009 ◽  
Vol 69 (12) ◽  
pp. 5108-5114 ◽  
Author(s):  
Aarif Ahsan ◽  
Susan M. Hiniker ◽  
Mary A. Davis ◽  
Theodore S. Lawrence ◽  
Mukesh K. Nyati

2015 ◽  
Vol 472 (2) ◽  
pp. 195-204 ◽  
Author(s):  
Silviya R. Stateva ◽  
Valentina Salas ◽  
Alberto Benguría ◽  
Itziar Cossío ◽  
Estefanía Anguita ◽  
...  

The existence of a calmodulin (CaM)/phospho-(Tyr)-CaM cycle involved in the regulation of the epidermal growth factor receptor could have important consequences for the control of cell proliferation, as its alteration could potentially result in uncontrolled tumour growth.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


Sign in / Sign up

Export Citation Format

Share Document