scholarly journals Icariside II, a Phosphodiesterase-5 Inhibitor, Attenuates Beta-Amyloid-Induced Cognitive Deficits via BDNF/TrkB/CREB Signaling

2018 ◽  
Vol 49 (3) ◽  
pp. 1010-1025 ◽  
Author(s):  
Shuang Liu ◽  
Xiaohui Li ◽  
Jianmei Gao ◽  
Yuangui Liu ◽  
Jingshan Shi ◽  
...  

Background/Aims: Icariside II (ICS II) is an active component from Epimedium brevicornum, a Chinese medicine extensively used in China. Our previous study has proved that ICS II protects against learning and memory impairments and neuronal apoptosis in the hippocampus induced by beta-amyloid25-35 (Aβ25-35) in rats. However, its in-depth underlying mechanisms remain still unclear. Hence this study was designed to explore the potential underlying mechanisms of ICS II by experiments with an in vivo model of Aβ25-35-induced cognitive deficits in rats combined with a neuronal-like PC12 cells injury in vitro model. Methods: The cognitive deficits was measured using Morris water maze test, and apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial ROS levels were detected by TUNEL, DCFH-DA and Mito-SOX staining, respectively. Expression of Bcl-2, Bax, brain derived neurotrophic factor (BDNF), tyrosine receptor kinase B (TrkB), and cAMP response element binding (p-CREB) and active-Caspase 3 levels were evaluated by Western blot. Results: It was found that ICS II, a phosphodiesterase-5 inhibitor, significantly attenuated cognitive deficits caused by Aβ25-35 injection in rats, and ICS II not only significantly enhanced the expression of BDNF and TrkB, but also activated CREB. Furthermore, ICS II also significantly abrogated Aβ25-35-induced PC12 cell injury, and inhibited Aβ25-35-induced intracellular reactive oxygen species (ROS) overproduction, as well as mitochondrial ROS levels. In addition, ICS II up-regulated the expressions of BDNF and TrkB consistent with the findings in vivo. ANA-12, a TrkB inhibitor, blocked the neuroprotective effect of ICS II on Aβ25-35-induced neuronal injury. Conclusion: ICS II mitigates Aβ25-35-induced cognitive deficits and neuronal cell injury by upregulating the BDNF/TrkB/CREB signaling, suggesting that ICS II can be used as a potential therapeutic agent for dementia, such as Alzheimer’s disease.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Chong Zhao ◽  
Takenori Sakaguchi ◽  
Kosuke Fujita ◽  
Hideyuki Ito ◽  
Norihisa Nishida ◽  
...  

Pomegranate-derived polyphenols are expected to prevent life-style related diseases. In this study, we evaluated the ability of 8 pomegranate-derived polyphenols, along with other polyphenols, to augment SIRT3, a mammalian SIR2 homolog localized in mitochondria. We established a system for screening foods/food ingredients that augment the SIRT3 promoter in Caco-2 cells and identified 3 SIRT3-augmenting pomegranate-derived polyphenols (eucalbanin B, pomegraniin A, and eucarpanin T1). Among them, pomegraniin A activated superoxide dismutase 2 (SOD2) through SIRT3-mediated deacetylation, thereby reducing intracellular reactive oxygen species. The other SIRT3-augmenting polyphenols tested also activated SOD2, suggesting antioxidant activity. Our findings clarify the underlying mechanisms involved in the antioxidant activity of pomegraniin A.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 316 ◽  
Author(s):  
Wanchun Su ◽  
Lei Wang ◽  
Xiaoting Fu ◽  
Liying Ni ◽  
Delin Duan ◽  
...  

A fucose-rich fucoidan was purified from brown seaweed Saccharina japonica, of which the UVB protective effect was investigated in vitro in keratinocytes of HaCaT cells and in vivo in zebrafish. The intracellular reactive oxygen species levels and the viability of UVB-irradiated HaCaT cells were determined. The results indicate that the purified fucoidan significantly reduced the intracellular reactive oxygen species levels and improved the viability of UVB-irradiated HaCaT cells. Furthermore, the purified fucoidan remarkably decreased the apoptosis by regulating the expressions of Bax/Bcl-xL and cleaved caspase-3 in UVB-irradiated HaCaT cells in a dose-dependent manner. In addition, the in vivo UV protective effect of the purified fucoidan was investigated using a zebrafish model. It significantly reduced the intracellular reactive oxygen species level, the cell death, the NO production, and the lipid peroxidation in UVB-irradiated zebrafish in a dose-dependent manner. These results suggest that purified fucoidan has a great potential to be developed as a natural anti-UVB agent applied in the cosmetic industry.


2008 ◽  
Vol 417 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Michael P. Murphy

The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2•−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2•− production within the matrix of mammalian mitochondria. The flux of O2•− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2•− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2•− production is far lower. The generation of O2•− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2•− generation by mitochondria in vivo from O2•−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.


2014 ◽  
Vol 94 (3) ◽  
pp. 909-950 ◽  
Author(s):  
Dmitry B. Zorov ◽  
Magdalena Juhaszova ◽  
Steven J. Sollott

Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yu-jie Li ◽  
Wei Zhao ◽  
Xu-jiao Yu ◽  
Feng-xian Li ◽  
Zi-ting Liu ◽  
...  

Bupivacaine has been shown to induce neurotoxicity through inducing excessive reactive oxygen species (ROS), but the underlying mechanism remains unclear. NOX2 is one of the most important sources of ROS in the nervous system, and its activation requires the membrane translocation of subunit p47phox. However, the role of p47phox in bupivacaine-induced neurotoxicity has not been explored. In our in vitro study, cultured human SH-SY5Y neuroblastoma cells were treated with 1.5 mM bupivacaine to induce neurotoxicity. Membrane translocation of p47phox was assessed by measuring the cytosol/membrane ratio of p47phox. The effects of the NOX inhibitor VAS2870 and p47phox-siRNA on bupivacaine-induced neurotoxicity were investigated. Furthermore, the effect of VAS2870 on bupivacaine-induced neurotoxicity was assessed in vivo in rats. All these changes were reversed by pretreatment with VAS2870 or transfection with p47phox-siRNA in SH-SY5Y cells. Similarly, pretreatment with VAS2870 attenuated bupivacaine-induced neuronal toxicity in rats. It is concluded that enhancing p47phox membrane translocation is a major mechanism whereby bupivacaine induced neurotoxicity and that pretreatment with VAS2870 or local p47phox gene knockdown attenuated bupivacaine-induced neuronal cell injury.


Sign in / Sign up

Export Citation Format

Share Document