Panax notoginseng Saponins Ameliorate Leukocyte Adherence and Cerebrovascular Endothelial Barrier Breakdown upon Ischemia-Reperfusion in Mice

2019 ◽  
Vol 56 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ting Wu ◽  
Zhanhong Jia ◽  
Shifen Dong ◽  
Bing Han ◽  
Rong Zhang ◽  
...  
2020 ◽  
Vol 18 (9) ◽  
pp. 713-722 ◽  
Author(s):  
Ganji Hong ◽  
Ying Yan ◽  
Yali Zhong ◽  
Jianer Chen ◽  
Fei Tong ◽  
...  

Background: Transient Ischemia/Reperfusion (I/R) is the main reason for brain injury and results in disruption of the Blood-Brain Barrier (BBB). It had been reported that BBB injury is one of the main risk factors for early death in patients with cerebral ischemia. Numerous investigations focus on the study of BBB injury which have been carried out. Objective: The objective of this study was to investigate the treatment function of the activation of the Hippo/Yes-Associated Protein (YAP) signaling pathway by combined Ischemic Preconditioning (IPC) and resveratrol (RES) before brain Ischemia/Reperfusion (BI/R) improves Blood-Brain Barrier (BBB) disruption in rats. Methods: Sprague-Dawley (SD) rats were pretreated with 20 mg/kg RES and IPC and then subjected to 2 h of ischemia and 22 h of reperfusion. The cerebral tissues were collected; the cerebral infarct volume was determined; the Evans Blue (EB) level, the brain Water Content (BWC), and apoptosis were assessed; and the expressions of YAP and TAZ were investigated in cerebral tissues. Results: Both IPC and RES preconditioning reduced the cerebral infarct size, improved BBB permeability, lessened apoptosis, and upregulated expressions of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) compared to the Ischemia/Reperfusion (I/R) group, while combined IPC and RES significantly enhanced this action. Conclusion: combined ischemic preconditioning and resveratrol improved blood-brain barrier breakdown via Hippo/YAP/TAZ signaling pathway.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Qin Zhang ◽  
Lizhuo Ai ◽  
Lifeng Liu ◽  
Cristian Betancourt ◽  
Maura Knapp ◽  
...  

Introduction: Impaired endothelial function leads to the progression of heart failure after Ischemia-reperfusion (IR). Kinin activation of bradykinin receptor 1 (B1R), a G protein-coupled receptor that has been found to induce capillary leakage, may serve as a critical mediator in cardiac microvascular barrier dysfunction. However, the underlying mechanisms are not clear. We found that B1R inhibition abolished IR-induced endothelial matrix metalloprotease (MMP3) expression and improved endothelial barrier formation. Thus, we hypothesized that B1R antagonist protects against cardiac IR injury through an MMP3 pathway. Methods and Results: MMP3-/- mice and their littermate controls (WT) were subjected to either cardiac IR or sham control. The baseline characteristics of these mice showed minimal phenotypes. Cardiac function was determined at 3, 7 and 24 days post-IR by echocardiography. The MMP3-/- mice displayed improved cardiac function compared to the control mice, as determined by fractional shortening (26% ± 1.1 MMP3-/- vs. 21% ± 0.9 WT, p<0.05, n=5) and ejection fraction (48% ± 1.9 MMP3-/- vs. 42% ± 2.8.1 WT, p<0.05, n=5), and treating with B1R antagonist (300 μg/Kg) significantly reduced serum MMP3 levels (p<0.01). Compared to the control mice, MMP3-/- mice had significantly less infarction/area at risk 24 hours post-IR demonstrated through TTC staining. In vitro studies revealed that cellular hypoxia-reoxygenation (HR) injury significantly increased both B1R and MMP3 expression levels in primary isolated cardiac mice microvascular endothelial cells (mCMVEC). MMP3 levels were measured via ELISA. Moreover, B1R agonist treatment (1uM) increased MMP3 levels, while the use of the antagonist attenuated the increase of MMP3 in response to HR. Finally, the use of B1R antagonist improved MMP3 induced endothelial barrier dysfunction, which was measured by the electric cell-substrate impedance sensing (ECIS) system. Taken together, the results demonstrated that B1R antagonist abolished IR induced MMP3 induction and that the deletion of MMP3 is protective of cardiac function upon IR injury. Conclusions: MMP3 is a critical regulator of cardiac microvascular barrier function, and B1R/MMP3 could potentially serve as a novel therapeutic target for heart failure in response to IR injury.


1992 ◽  
Vol 263 (3) ◽  
pp. H810-H815 ◽  
Author(s):  
M. A. Perry ◽  
D. N. Granger

The objective of this study was to compare the leukocyte-endothelial cell adhesive interactions elicited in postcapillary venules by either local ischemia-reperfusion or hemorrhage-reperfusion. Leukocyte rolling, adherence, and emigration were monitored in cat mesenteric venules exposed to an 85% reduction in blood flow (induced by either hemorrhage or local restriction of arterial inflow) for 1 h, followed by 1 h reperfusion. Leukocyte-endothelial cell interactions, venular diameter, and red blood cell velocity were measured during baseline, ischemia, and reperfusion periods. Both local and hemorrhage-induced ischemia reperfusion caused a reduction in leukocyte rolling velocity and increases in leukocyte adherence and emigration. Quantitatively, the adherence and emigration responses in both ischemia models were nearly identical. However, the two models differed in their response to immunoneutralization of the leukocyte adhesion glycoprotein CD11/CD18 with monoclonal antibody (MAb) IB4. The MAb had a more profound effect in attenuating leukocyte adherence and emigration in the local ischemia model. These results indicate that different factors may contribute to leukocyte-endothelial cell adhesive interactions observed in local vs. systemic models of ischemia-reperfusion.


2012 ◽  
Vol 138 (4) ◽  
pp. 627-641 ◽  
Author(s):  
Nicolas Schlegel ◽  
Rhea Leweke ◽  
Michael Meir ◽  
Christoph-Thomas Germer ◽  
Jens Waschke

1999 ◽  
Vol 19 (4) ◽  
pp. 417-424 ◽  
Author(s):  
T. S. Park ◽  
Ernesto R. Gonzales ◽  
Jeffrey M. Gidday

The authors examined the involvement of platelet-activating factor (PAF) in mediating leukocyte adherence to brain postcapillary pial venules and altering blood-brain barrier (BBB) permeability during basal conditions and during reoxygenation after asphyxia in newborn piglets. Intravital epifluorescence videomicroscopy, closed cranial windows, and labeling of leukocytes with rhodamine 6G allowed us to obtain serial measurements of adherent leukocytes within postcapillary venules. Blood-brain barrier breakdown was determined by optical measures of cortical extravascular fluorescence intensity after intravenous sodium fluorescein. Superfusion of PAF over the cortex induced a dose-dependent increase in leukocyte adherence to cerebral venules and leakage of fluorescein; with 1 μmol/L PAF, the magnitude of adherence and BBB breakdown was similar to that seen during reoxygenation after 9 minutes of asphyxia. Both adherence and loss of BBB integrity resulting from either exogenous PAF or asphyxia-reoxygenation could be significantly attenuated by intravenous administration of WEB 2086, a PAF receptor antagonist. Window superfusion of superoxide dismutase with PAF attenuated PAF-induced increases in adherence and associated fluorescein leakage. These findings indicate that PAF exhibits proinflammatory effects in piglet brain and that PAF contributes to leukocyte adherence and BBB breakdown after cerebral ischemia. These PAF effects are mediated by increases in superoxide radical generation.


Sign in / Sign up

Export Citation Format

Share Document