scholarly journals Coxsackievirus B Tailors the Unfolded Protein Response to Favour Viral Amplification in Pancreatic β Cells

2019 ◽  
Vol 11 (4) ◽  
pp. 375-390 ◽  
Author(s):  
Maikel L. Colli ◽  
Flavia M. Paula ◽  
Lorella Marselli ◽  
Piero Marchetti ◽  
Merja Roivainen ◽  
...  

Type 1 diabetes (T1D) is an autoimmune disease characterized by islet inflammation and progressive pancreatic β cell destruction. The disease is triggered by a combination of genetic and environmental factors, but the mechanisms leading to the triggering of early innate and late adaptive immunity and consequent progressive pancreatic β cell death remain unclear. The insulin-producing β cells are active secretory cells and are thus particularly sensitive to endoplasmic reticulum (ER) stress. ER stress plays an important role in the pathologic pathway leading to autoimmunity, islet inflammation, and β cell death. We show here that group B coxsackievirus (CVB) infection, a putative causative factor for T1D, induces a partial ER stress in rat and human β cells. The activation of the PERK/ATF4/CHOP branch is blunted while the IRE1α branch leads to increased spliced XBP1 expression and c-Jun N-terminal kinase (JNK) activation. Interestingly, JNK1 activation is essential for CVB amplification in both human and rat β cells. Furthermore, a chemically induced ER stress preceding viral infection increases viral replication, in a process dependent on IRE1α activation. Our findings show that CVB tailors the unfolded protein response in β cells to support their replication, preferentially triggering the pro-viral IRE1α/XBP1s/JNK1 pathway while blocking the pro-apoptotic PERK/ATF4/CHOP pathway.

2016 ◽  
Vol 57 (1) ◽  
pp. R1-R17 ◽  
Author(s):  
Kira Meyerovich ◽  
Fernanda Ortis ◽  
Florent Allagnat ◽  
Alessandra K Cardozo

Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.


2019 ◽  
Author(s):  
Sarah A. White ◽  
Lisa Zhang ◽  
Yu Hsuan Carol Yang ◽  
Dan S. Luciani

ABSTRACTER stress and apoptosis contribute to the loss of pancreatic β-cells under the pro-diabetic conditions of glucolipotoxicity. Although activation of the canonical pathway of intrinsic apoptosis is known to require Bax and Bak, their individual and combined involvement in glucolipotoxic β-cell death have not been demonstrated. It has also remained an open question if Bax and Bak in β-cells have non-apoptotic roles in mitochondrial function and ER stress signaling, as suggested in other cell types. Using mice with individual or combined β-cell deletion of Bax and Bak, we demonstrated that glucolipotoxic β-cell death in vitro happens in sequential stages; first via non-apoptotic mechanisms and later by apoptosis, which Bax and Bak were redundant in triggering. In contrast, they had non-redundant roles in mediating staurosporine-induced β-cell apoptosis. We further established that Bax and Bak do not affect normal glucose-stimulated β-cell Ca2+ responses, insulin secretion, or in vivo glucose tolerance. Finally, our experiments revealed that Bax and Bak together dampen the unfolded protein response in β-cells during the early stages of chemical- or glucolipotoxicity-induced ER stress. These findings identify novel roles of the canonical apoptosis machinery in modulating stress signals that are important for the pathobiology of β-cells in diabetes.


Endocrinology ◽  
2016 ◽  
Vol 157 (5) ◽  
pp. 1775-1788 ◽  
Author(s):  
Christopher R. LaPensee ◽  
Jacqueline E. Mann ◽  
William E. Rainey ◽  
Valentina Crudo ◽  
Stephen W. Hunt ◽  
...  

Abstract ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death. In H295R human adrenocortical carcinoma cells, ATR-101 decreases the formation of cholesteryl esters and increases FC levels, demonstrating potent inhibition of ACAT1 activity. Caspase-3/7 levels and terminal deoxynucleotidyl transferase 2′-deoxyuridine 5′-triphosphate nick end labeled-positive cells are increased by ATR-101 treatment, indicating activation of apoptosis. Exogenous cholesterol markedly potentiates the activity of ATR-101, suggesting that excess FC that cannot be adequately esterified increases caspase-3/7 activation and subsequent cell death. Inhibition of calcium release from the ER or the subsequent uptake of calcium by mitochondria reverses apoptosis induced by ATR-101. ATR-101 also activates multiple components of the unfolded protein response, an indicator of ER stress. Targeted knockdown of ACAT1 in an adrenocortical cell line mimicked the effects of ATR-101, suggesting that ACAT1 mediates the cytotoxic effects of ATR-101. Finally, in vivo treatment of dogs with ATR-101 decreased adrenocortical steroid production and induced cellular apoptosis that was restricted to the adrenal cortex. Together, these studies demonstrate that inhibition of ACAT1 by ATR-101 increases FC, resulting in dysregulation of ER calcium stores that result in ER stress, the unfolded protein response, and ultimately apoptosis.


2014 ◽  
Vol 25 (9) ◽  
pp. 1411-1420 ◽  
Author(s):  
Nobuhiko Hiramatsu ◽  
Carissa Messah ◽  
Jaeseok Han ◽  
Matthew M. LaVail ◽  
Randal J. Kaufman ◽  
...  

Endoplasmic reticulum (ER) protein misfolding activates the unfolded protein response (UPR) to help cells cope with ER stress. If ER homeostasis is not restored, UPR promotes cell death. The mechanisms of UPR-mediated cell death are poorly understood. The PKR-like endoplasmic reticulum kinase (PERK) arm of the UPR is implicated in ER stress–induced cell death, in part through up-regulation of proapoptotic CCAAT/enhancer binding protein homologous protein (CHOP). Chop−/− cells are partially resistant to ER stress–induced cell death, and CHOP overexpression alone does not induce cell death. These findings suggest that additional mechanisms regulate cell death downstream of PERK. Here we find dramatic suppression of antiapoptosis XIAP proteins in response to chronic ER stress. We find that PERK down-regulates XIAP synthesis through eIF2α and promotes XIAP degradation through ATF4. Of interest, PERK's down-regulation of XIAP occurs independently of CHOP activity. Loss of XIAP leads to increased cell death, whereas XIAP overexpression significantly enhances resistance to ER stress–induced cell death, even in the absence of CHOP. Our findings define a novel signaling circuit between PERK and XIAP that operates in parallel with PERK to CHOP induction to influence cell survival during ER stress. We propose a “two-hit” model of ER stress–induced cell death involving concomitant CHOP up-regulation and XIAP down-regulation both induced by PERK.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 848-848
Author(s):  
Emma L. Davenport ◽  
Hannah Moore ◽  
Alan Dunlop ◽  
Paul Workman ◽  
Gareth J. Morgan ◽  
...  

Abstract Immunoglobulin production by plasma cells both defines them functionally and also provides a differential target for the therapy of their malignant counterparts. Plasma cells producing high levels of paraprotein are dependent upon the unfolded protein response (UPR) and chaperone proteins to ensure correct protein folding and cell survival. We have evaluated a strategy aimed at manipulating the UPR response to deliver a novel death signal in myeloma. In order to study the apoptotic effects of the disruption of the UPR, a panel of myeloma cell lines were treated with the ER stress inducers (thapsigargin (TG) a Ca2+-ATPase inhibitor and tunicamycin (TM) an N-linked glycosylation inhibitor); the HSP90 inhibitors, 17-AAG and radicicol; and the proteasome inhibitor bortezomib, which disrupts misfolded protein disposal. The presence of misfolded proteins in the ER is detected by a complex of proteins embedded within the membrane comprised of BiP, PERK, IRE-1 and ATF6, each of which has distinct downstream effects that are mediated by their release from the complex and activation of the UPR. Treatment with TG and TM led to the activation of all three branches of the UPR as demonstrated by early splicing of XBP1 to XBP1s indicative of IRE1 activation, PERK activation as measured by transcriptional upregulation of CHOP (7-22 fold) and ATF6 splicing. 17-AAG was also capable of inducing splicing of XBP1 and the induction of CHOP (30 fold) whereas bortezomib resulted in induction of CHOP (25 fold) and minimal, late onset splicing of XBP1. Following treatment with all the drugs expression levels of BiP mRNA were upregulated (3-10 fold), however due to high basal levels of BiP protein we were unable to detect any further rises in this protein. The ER-resident HSP90 analogue, Grp94, underwent minimal transcriptional upregulation (2–3 fold) in response to HSP90 inhibitors but larger responses were noted following treatment with TM and TG (3–5 fold). HSP90 protein expression remained constant following exposure to all drugs. In contrast a time-dependent upregulation of the anti-apoptotic HSP70 was noted in response to 17-AAG, radicicol and bortezomib treatment; TG and TM failed to affect levels of HSP70. Levels of the transcript of EDEM1, an ER stress inducible membrane protein that accelerates the degradation of misfolded protein in the ER by strengthening the ERAD machinery, were induced by all drugs with an increase in the transcript levels of between 2 and 4 fold after 24 hours. All drugs were capable of inhibiting proliferation as demonstrated by MTT assay. In addition TG, bortezomib, 17AAG and radicicol also induced myeloma cell death as demonstrated by trypan blue and Annexin V/PI staining. A distinct pattern of activation of caspases in response to the drugs was also established. Bortezomib activated both the intrinsic (caspases 9 and 3) and the extrinsic (caspases 8 and 3) caspase pathways, whilst 17-AAG appears to mediate cell death via the intrinsic pathway alone. In contrast, TM and TG failed to activate either the extrinsic or intrinsic pathways within 24 hours and within this time frame appeared to induce cell death by a caspase-independent mechanism. In conclusion as well as inducing apoptosis via the intrinsic caspase death pathway, HSP90 inhibitors also induce myeloma cell death via ER stress and the UPR death pathway. Our results confirm that the unfolded protein response is an exciting new pathway that can be therapeutically targeted in myeloma.


2008 ◽  
Vol 29 (3) ◽  
pp. 317-333 ◽  
Author(s):  
Donalyn Scheuner ◽  
Randal J. Kaufman

Abstract The endoplasmic reticulum (ER) is the entry site into the secretory pathway for newly synthesized proteins destined for the cell surface or released into the extracellular milieu. The study of protein folding and trafficking within the ER is an extremely active area of research that has provided novel insights into many disease processes. Cells have evolved mechanisms to modulate the capacity and quality of the ER protein-folding machinery to prevent the accumulation of unfolded or misfolded proteins. These signaling pathways are collectively termed the unfolded protein response (UPR). The UPR sensors signal a transcriptional response to expand the ER folding capacity, increase degredation of malfolded proteins, and limit the rate of mRNA translation to reduce the client protein load. Recent genetic and biochemical evidence in both humans and mice supports a requirement for the UPR to preserve ER homeostasis and prevent the β-cell failure that may be fundamental in the etiology of diabetes. Chronic or overwhelming ER stress stimuli associated with metabolic syndrome can disrupt protein folding in the ER, reduce insulin secretion, invoke oxidative stress, and activate cell death pathways. Therapeutic interventions to prevent polypeptide-misfolding, oxidative damage, and/or UPR-induced cell death have the potential to improve β-cell function and/or survival in the treatment of diabetes.


2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Jungwoo Yang ◽  
Kwang Soo Kim ◽  
Grace O. Iyirhiaro ◽  
Paul C. Marcogliese ◽  
Steve M. Callaghan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document