Die Relevanz des angeborenen Immunsystems für die atopische Dermatitis

2019 ◽  
Vol 7 (3) ◽  
pp. 138-139
Author(s):  
Regina Fölster-Holst

Background: Altered regulatory immune responses to microbial stimuli and intestinal colonization of beneficial bacteria early in life may contribute to the development of allergic diseases (e.g., atopic dermatitis [AD]). However, few reports have investigated these factors simultaneously. The purpose of this study was to analyze neonatal immune responses to microbial stimuli as well as intestinal colonization of beneficial bacteria, in relation to the development of AD in a birth cohort. Methods: Pregnant women were recruited, and their infants were followed up until 7 months of age. Levels of interleukin (IL)-10 released from cord-blood mononuclear cells (CBMCs) stimulated with heat-killed gram-positive bacteria (Bifidobacterium bifidum and Lactobacillus rhamnosus GG) and Lactobacillus-derived peptidoglycan were measured. Fecal Bifidobacterium counts at 4 days and 1 month were quantified using real-time polymerase chain reaction. The development of AD was determined by means of a questionnaire at 7 months of age. Results: The levels of released IL-10 were significantly lower in infants with AD (n = 17) than in infants without AD (n = 53) for all stimuli. In infants with fecal Bifidobacterium, the incidence of AD was inversely associated with the release of IL-10 from cord blood mononuclear cells. Conclusion: Our findings suggest that impaired IL-10 production in response to microbial stimuli at birth may be associated with an increased risk of developing infantile AD, even in infants with early colonization of intestinal bifidobacteria.

1998 ◽  
Vol 101 (4) ◽  
pp. 514-520 ◽  
Author(s):  
Zsolt Szépfalusi ◽  
Ivo Nentwich ◽  
Eva Josta ◽  
Marianne Gerstmayra ◽  
Christof Ebner ◽  
...  

Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3731-3740 ◽  
Author(s):  
F Pflumio ◽  
B Izac ◽  
A Katz ◽  
LD Shultz ◽  
W Vainchenker ◽  
...  

In an attempt to understand better the regulation of stem cell function in chimeric immunodeficient mice transplanted with human cells, and the filiation between progenitor cells identified in vitro and in vivo, we assessed the different compartments of hematopoietic progenitors found in the marrow of CB17-severe combined immunodeficiency (SCID) mice (34 mice, 9 experiments) after intravenous injection of 2 to 3 x 10(7) cord blood mononuclear cells. On average 6.3 +/-4 x 10(5) human cells were detected per four long bones 4 to 6 weeks after the transplant predominantly represented by granulomonocytic (CD11b+) and B lymphoid (CD19+) cells. Twenty five percent of these human cells expressed the CD34 antigen, of which 90% coexpressed the CD38 antigen and 50% the CD19 antigen. Functional assessment of progenitor cells (both clonogenic and long-term culture-initiating cells [LTC-IC]) was performed after human CD34+ cells and CD34+/CD38- cells have been sorted from chimeric CB17-SCID marrow 3 to 10 weeks after intravenous (IV) injection of human cells. The frequency of both colony-forming cells and LTC-IC was low (4% and 0.4%, respectively in the CD34+ fraction) when compared with the frequencies of cells with similar function in CD34+ cells from the starting cord blood mononuclear cells (26% +/- 7% and 7.2% +/- 5%, respectively). More surprisingly, the frequency of LTC-IC was also low in the human CD34+ CD38- fraction sorted from chimeric mice. This observation might be partly accounted for by the expansion of the CD34+ CD19+ B-cell precursor compartment. Despite their decreased frequency and absolute numbers, the differentiation capability of these LTC-IC, assessed by their clonogenic progeny output after 5 weeks in coculture with murine stromal cells was intact when compared with that of input LTC-IC. Furthermore the ratio between clonogenic progenitor cells and LTC-IC was similar in severe combined immunodeficiency (SCID) mice studied 4 weeks after transplant and in adult marrow or cord blood suspensions. Results generated in experiments where nonobese diabetic (NOD)-SCID mice were used as recipients indicate a higher level of engraftment but no change in the distribution of clonogenic cells or LTC-IC. These results suggest that the hierarchy of hematopoietic differentiation classically defined in human hematopoietic tissues can be reconstituted in immunodeficient SCID or NOD-SCID mice.


2017 ◽  
Vol 24 (4) ◽  
pp. 187-194 ◽  
Author(s):  
Yetty Ramli ◽  
Ahmad Sulaiman Alwahdy ◽  
Mohammad Kurniawan ◽  
Berry Juliandi ◽  
Puspita Eka Wuyung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document