Pathogenic and Compensatory Mechanisms in Epidermis of Sphingomyelin Synthase 2-Deficient Mice

2021 ◽  
pp. 1-7
Author(s):  
Shota Sakai ◽  
Asami Makino ◽  
Akihito Nishi ◽  
Takeshi Ichikawa ◽  
Tadashi Yamashita ◽  
...  

Sphingomyelin (SM) is a constituent of cellular membranes, while ceramides (Cer) produced from SM on plasma membranes serve as a lipid mediator that regulates cell proliferation, differentiation, and apoptosis. In the skin, SM also is a precursor of Cer, an important constituent of epidermal permeability barrier. We investigated the role of epidermal SM synthase (SMS)2, an isoform of SMS, which modulates SM and Cer levels on plasma membranes. Although SMS2-knockout (SMS2-KO) mice were not neonatal lethal, an ichthyotic phenotype with epidermal hyperplasia and hyperkeratosis was evident at birth, which persisted until 2 weeks of age. These mice showed abnormal lamellar body morphology and secretion, and abnormal extracellular lamellar membranes in the stratum corneum. These abnormalities were no longer evident by 4 weeks of age in SMS2-KO mice. Our study suggests that (1) exposure to a dry terrestrial environment initiates compensatory responses, thereby normalizing epidermal ichthyotic abnormalities and (2) that a nonlethal gene abnormality can cause an ichthyotic skin phenotype.

2018 ◽  
Vol 27 (8) ◽  
pp. 827-832 ◽  
Author(s):  
Koji Nomoto ◽  
Yurina Itaya ◽  
Ken Watanabe ◽  
Tadashi Yamashita ◽  
Toshiro Okazaki ◽  
...  

2010 ◽  
Vol 298 (5) ◽  
pp. F1152-F1161 ◽  
Author(s):  
Constanze Will ◽  
Tilman Breiderhoff ◽  
Julia Thumfart ◽  
Marchel Stuiver ◽  
Kathrin Kopplin ◽  
...  

Claudin-16 (CLDN16) is critical for renal paracellular epithelial transport of Ca2+ and Mg2+ in the thick ascending loop of Henle. To gain novel insights into the role of CLDN16 in renal Ca2+ and Mg2+ homeostasis and the pathological mechanisms underlying a human disease associated with CLDN16 dysfunction [familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), OMIM 248250], we generated a mouse model of CLDN16 deficiency. Similar to patients, CLDN16-deficient mice displayed hypercalciuria and hypomagnesemia. Contrary to FHHNC patients, nephrocalcinosis was absent in our model, indicating the existence of compensatory pathways in ion handling in this model. In line with the renal loss of Ca2+, compensatory mechanisms like parathyroid hormone and 1,25(OH)2D3 were significantly elevated. Also, gene expression profiling revealed transcriptional upregulation of several Ca2+ and Mg2+ transport systems including Trpv5, Trpm6, and calbindin-D9k. Induced gene expression was also seen for the transcripts of two putative Mg2+ transport proteins, Cnnm2 and Atp13a4. Moreover, urinary pH was significantly lower when compared with wild-type mice. Taken together, our findings demonstrate that loss of CLDN16 activity leads to specific alterations in Ca2+ and Mg2+ homeostasis and that CLDN16-deficient mice represent a useful model to further elucidate pathways involved in renal Ca2+ and Mg2+ handling.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
HY Jeon ◽  
JK Kim ◽  
JE Lee ◽  
WG Kim ◽  
SJ Lee

2021 ◽  
Vol 22 (11) ◽  
pp. 5645
Author(s):  
Stefano Morotti ◽  
Haibo Ni ◽  
Colin H. Peters ◽  
Christian Rickert ◽  
Ameneh Asgari-Targhi ◽  
...  

Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart’s primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.


Sign in / Sign up

Export Citation Format

Share Document