scholarly journals Factors Affecting Energy Metabolism and Prognosis in Patients with Amyotrophic Lateral Sclerosis

2021 ◽  
pp. 1-8
Author(s):  
Mika Kurihara ◽  
Shigeki Bamba ◽  
Shoko Yasuhara ◽  
Akihiko Itoh ◽  
Taishi Nagao ◽  
...  

<b><i>Background/Aims:</i></b> Nutritional status is a factor affecting prognosis in patients with amyotrophic lateral sclerosis (ALS). Here, we aimed to clarify the factors associated with hypermetabolism and the prognosticators of ALS. <b><i>Methods:</i></b> Forty-two inpatients (22 men, 20 women) diagnosed with ALS according to the revised El-Escorial criteria were investigated. The following data were retrospectively analyzed: anthropometric measurements, blood biochemistry, disease severity, basal energy expenditure (BEE), resting energy expenditure (REE) measured by indirect calorimetry, spirometry, and bioelectrical impedance analysis. Single and multiple regression analysis was performed to examine factors affecting REE and metabolic changes (defined as the ratio of REE to fat-free mass [FFM]). The Kaplan-Meier method was used to examine factors associated with the occurrence of cumulative events (death or tracheostomy). <b><i>Results:</i></b> Among the 42 inpatients, REE was significantly higher than BEE, indicating hypermetabolism in ALS. Multiple regression analysis revealed that REE/FFM is strongly associated with the skeletal muscle index (−3.746 to −1.532, <i>p</i> &#x3c; 0.0001) and percent forced vital capacity (%FVC) (−0.172 to −0.021, <i>p</i> = 0.013). Moreover, both the skeletal muscle index and %FVC were significant prognosticators associated with the occurrence of cumulative events. <b><i>Conclusions:</i></b> Energy metabolism was elevated in ALS, and respiratory status and muscle mass were associated with the hypermetabolism and poor prognosis. Adequate nutritional support may improve outcomes in ALS by preventing deterioration of respiratory status and reduction in muscle mass.

2019 ◽  
Vol 20 (2) ◽  
pp. 233 ◽  
Author(s):  
Damian Jozef Flis ◽  
Katarzyna Dzik ◽  
Jan Jacek Kaczor ◽  
Karol Cieminski ◽  
Malgorzata Halon-Golabek ◽  
...  

Metabolic reprogramming in skeletal muscles in the human and animal models of amyotrophic lateral sclerosis (ALS) may be an important factor in the diseases progression. We hypothesized that swim training, a modulator of cellular metabolism via changes in muscle bioenergetics and oxidative stress, ameliorates the reduction in muscle strength in ALS mice. In this study, we used transgenic male mice with the G93A human SOD1 mutation B6SJL-Tg (SOD1G93A) 1Gur/J and wild type B6SJL (WT) mice. Mice were subjected to a grip strength test and isolated skeletal muscle mitochondria were used to perform high-resolution respirometry. Moreover, the activities of enzymes involved in the oxidative energy metabolism and total sulfhydryl groups (as an oxidative stress marker) were evaluated in skeletal muscle. ALS reduces muscle strength (−70% between 11 and 15 weeks, p < 0.05), modulates muscle metabolism through lowering citrate synthase (CS) (−30% vs. WT, p = 0.0007) and increasing cytochrome c oxidase and malate dehydrogenase activities, and elevates oxidative stress markers in skeletal muscle. Swim training slows the reduction in muscle strength (−5% between 11 and 15 weeks) and increases CS activity (+26% vs. ALS I, p = 0.0048). Our findings indicate that swim training is a modulator of skeletal muscle energy metabolism with concomitant improvement of skeletal muscle function in ALS mice.


2014 ◽  
Vol 99 (4) ◽  
pp. 792-803 ◽  
Author(s):  
Edward J Kasarskis ◽  
Marta S Mendiondo ◽  
Dwight E Matthews ◽  
Hiroshi Mitsumoto ◽  
Rup Tandan ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Oihane Pikatza-Menoio ◽  
Amaia Elicegui ◽  
Xabier Bengoetxea ◽  
Neia Naldaiz-Gastesi ◽  
Adolfo López de Munain ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1449
Author(s):  
Cyril Quessada ◽  
Alexandra Bouscary ◽  
Frédérique René ◽  
Cristiana Valle ◽  
Alberto Ferri ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose–fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.


2010 ◽  
Vol 11 (1-2) ◽  
pp. 240-243 ◽  
Author(s):  
Gianni Sorarú ◽  
Valeria Orsetti ◽  
Emanuele Buratti ◽  
Francisco Baralle ◽  
Valentina Cima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document